We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The interaction of helminth infections with type 2 diabetes (T2D) has been a major area of research in the past few years. This paper, therefore, focuses on the systematic review of the effects of helminthic infections on metabolism and immune regulation related to T2D, with mechanisms through which both direct and indirect effects are mediated. Specifically, the possible therapeutic role of helminths in T2D management, probably mediated through the modulation of host metabolic pathways and immune responses, is of special interest. This paper discusses the current possibilities for translating helminth therapy from basic laboratory research to clinical application, as well as existing and future challenges. Although preliminary studies suggest the potential for helminth therapy for T2D patients, their safety and efficacy still need to be confirmed by larger-scale clinical studies.
To evaluate the prognostic value of electrocardiographic ventricular repolarisation parameters in children with dilated cardiomyopathy.
Methods:
A retrospective study was conducted involving 89 children with dilated cardiomyopathy [age 5.24 (4.32, 6.15) years] as the research group, and a control group consisting of 80 healthy children matched for age and sex. Within the research group, there were 76 cases in the survival subgroup and 13 cases in the death subgroup. Ventricular repolarisation parameters were measured.
Results:
(1) Compared to the control group, both QTcmax and QTcmin were significantly prolonged in the research group (P < 0.01). Additionally, Tp-Te /QT ratios for leads III, aVL, V1, V2, and V3 showed an increase (P < 0.05), while T-wave amplitudes for leads I, II, aVL, aVF, V4, V5, and V6 exhibited a decrease (P < 0.05). (2) In comparison to the survival subgroup, the diameters of the LV, RV, LA, and RA in the death subgroup were enlarged, while the left ventricular ejection fraction and eft ventricular fractional shortening were decreased (P < 0.05). The Tp-Te /QT ratios for leads aVR, V5, and V6 also increased notably (P < 0.05 or P < 0.01). The T-wave amplitude readings from leads II, aVF, and V6 demonstrated significant reductions (P < 0.05).
Conclusion:
Abnormal ventricular repolarisation parameters were found in dilated cardiomyopathy children. Increased Tp-Te /QT ratios in aVR, V5, and V6 leads and decreased T-wave amplitudes in II, aVF, and V6 leads were risk factors for predicting mortality in children with dilated cardiomyopathy.
To investigate the association of dietary patterns (DPs) with prediabetes and Type 2 Diabetes among Tibetan adults, first to identify DPs associated with abdominal obesity and examine their relationships with prediabetes and type 2 diabetes. Additionally, the study aims to investigate the mediating effects of body fat distribution and altitude on the associations between these DPs and the prevalence of prediabetes and Type 2 Diabetes.
Design:
An open cohort among Tibetans.
Setting:
Community-based.
Participants:
The survey recruited 1003 participants registered for health check-ups from November to December 2018, and 1611 participants from December 2021 to May 2022. During the baseline and follow-up data collection, 1818 individuals participated in at least one of the two surveys, with 515 of them participating in both.
Results:
Two DPs were identified by reduced rank regression (RRR). DP1 had high consumption of beef and mutton, non-caloric drink, offal, and low intake in tubers and roots, salty snacks, onion and spring onion, fresh fruits, desserts and nuts and seeds; DP2 had high intake of whole grains, Tibetan cheese, light-colored vegetables and pork and low of sugar-sweetened beverages, whole-fat dairy and poultry. Individuals in the highest tertile of DP1 showed higher risks of prediabetes (OR 95% CI) 1.35 (1.05, 1.73) and T2D 1.36 (1.05, 1.76). In the highest tertile of DP2 exhibited an elevated risk of T2D 1.63 (1.11, 2.40) in fully adjustment.
Conclusion:
Abdominal adiposity-related DPs are positively associated with T2D. Promoting healthy eating should be considered to prevent T2D among Tibetan adults.
This study investigates the transport of particles in turbulent channel flow with friction Reynolds number $Re_\tau = 1000$ by direct numerical simulation. We focus on how large-scale flow structures, namely the $Qs$ structures (Lozano-Durán et al. 2012, J. Fluid Mech., vol. 694, pp. 100–130), affect the wall-normal transport of particles. Despite occupying less than $10\,\%$ of the physical domain, our results highlight the critical role played by $Qs$ structures in the particle transport, namely that the particle number and momentum flux inside the $Qs$ structures are substantially higher than outside. The fraction of particle wall-normal momentum flux inside $Qs$ structures is considerably larger than their volume fraction, suggesting highly efficient transport inside the $Qs$ structures. This prominent role played by $Qs$ structures in the transport of inertial particles is more effective by diminishing the inertia of particles. Notably, the long-distance transport of particles in the wall-normal direction is driven primarily by the continuous effect of $Qs$ structures. In summary, our findings advance the understanding of the effects of $Qs$ structures on particle transport, and demonstrate their significant role in the process.
The ban on antibiotics as feed additives requires modern intensive farming with more comprehensive diseases control approaches. Currently, synbiotics serve as promising alternatives to enhance growth performance and improve health in the poultry industry. In this research, we investigated beneficial effects of Lactobacillus reuteri (LR) with its combination of gluco-oligosaccharides (GlcOS) supplementation on growth performance and intestinal health of broilers. A total of 900 1-day-old male Lingnan yellow-feather broilers were randomly allocated into the control group (CON group, and two experimental groups feeding basal diet supplementing LR (LR group) and its combination with GlcOS (RG group), respectively. The findings indicated beneficial effects of growth performance in experimental groups (LR and RG groups), as evidenced by decreasing the feed-to-gain ratio (F/G) in both experimental groups (P < 0.05) and increasing the average daily gain (ADG) in the RG group (P < 0.05). Simultaneously, both experimental groups increased the villus height/crypt depth ratio (VH:CD) (P < 0.001). Furthermore, the RG group showed increased activity of digestive enzymes (P < 0.05) and upregulated mRNA expression of tight junction protein and transportation protein (P < 0.05), while decreased the serum levels of d-lactic acid and diamine oxidase (P < 0.05), suggesting the improvement of the nutrient digestion and absorption, as well as the mucosal barrier integrity. Moreover, increased abundance of beneficial bacteria, including Bacteroides, Muribaculaceae and Prevotellaceae_UCG-001 (P < 0.05), leading to a finely altered gut microbiome and metabolome. Collectively, the findings of this research revealed that dietary supplemented LR and its combination with GlcOS could enhance the intestinal morphology, digestion, absorption and barrier function, and improve the cecal microbiota structure and metabolic function finally achieving the effect of improving growth performance of broilers. Overall, the effect of the combination of LR and GlcOS was synergistic, providing a future alternative to antibiotics as growth promoter.
This study investigated the factors influencing the mental health of rural doctors in Hebei Province, to provide a basis for improving the mental health of rural doctors and enhancing the level of primary health care.
Background:
The aim of this study was to understand the mental health of rural doctors in Hebei Province, identify the factors that influence it, and propose ways to improve their psychological status and the level of medical service of rural doctors.
Methods:
Rural doctors from 11 cities in Hebei Province were randomly selected, and their basic characteristics and mental health status were surveyed via a structured questionnaire and the Symptom Checklist-90 (SCL-90). The differences between the SCL-90 scores of rural doctors in Hebei Province and the Chinese population norm, as well as the proportion of doctors with mental health problems, were compared. Logistic regression was used to analyse the factors that affect the mental health of rural doctors.
Results:
A total of 2593 valid questionnaires were received. The results of the study revealed several findings: the younger the rural doctors, the greater the incidence of mental health problems (OR = 0.792); female rural doctors were more likely to experience mental health issues than their male counterparts (OR = 0.789); rural doctors with disabilities and chronic diseases faced a significantly greater risk of mental health problems compared to healthy rural doctors (OR = 2.268); rural doctors with longer working hours have a greater incidence of mental health problems; and rural doctors with higher education backgrounds have a higher prevalence of somatization (OR = 1.203).
Conclusion:
Rural doctors who are younger, male, have been in medical service longer, have a chronic illness or disability, and have a high degree of education are at greater risk of developing mental health problems. Attention should be given to the mental health of the rural doctor population to improve primary health care services.
Emission line galaxies (ELGs) are crucial for cosmological studies, particularly in understanding the large-scale structure of the Universe and the role of dark energy. ELGs form an essential component of the target catalogue for the Dark Energy Spectroscopic Instrument (DESI), a major astronomical survey. However, the accurate selection of ELGs for such surveys is challenging due to the inherent uncertainties in determining their redshifts with photometric data. In order to improve the accuracy of photometric redshift estimation for ELGs, we propose a novel approach CNN–MLP that combines convolutional neural networks (CNNs) with multilayer perceptrons (MLPs). This approach integrates both images and photometric data derived from the DESI Legacy Imaging Surveys Data Release 10. By leveraging the complementary strengths of CNNs (for image data processing) and MLPs (for photometric feature integration), the CNN–MLP model achieves a $\sigma_{\mathrm{NMAD}}$ (normalised median absolute deviation) of 0.0140 and an outlier fraction of 2.57%. Compared to other models, CNN–MLP demonstrates a significant improvement in the accuracy of ELG photometric redshift estimation, which directly benefits the target selection process for DESI. In addition, we explore the photometric redshifts of different galaxy types (Starforming, Starburst, AGN, and Broadline). Furthermore, this approach will contribute to more reliable photometric redshift estimation in ongoing and future large-scale sky surveys (e.g. LSST, CSST, and Euclid), enhancing the overall efficiency of cosmological research and galaxy surveys.
Germplasm resources are the foundation for improving crop varieties and a strategic asset for global food security. They also advance plant breeding, agricultural biotechnology and the production of essential agricultural goods. To assess the distribution, diversity and conservation status of food crop germplasm in the Hainan Province, China, we conducted a detailed survey of the Hainan Island. Between 2017 and 2022, we collected 330 food crop germplasm resources, encompassing 16 cereal crops, including rice, maize, sweet potato. The collected germplasm resources exhibited traits of high resistance to both biotic and abiotic stresses, including common diseases and drought stress, as well as superior quality and adaptability to poor soil conditions such as sandy land. However, challenges such as low productivity and hybrid degradation were identified. These resources were primarily found in Haikou City, Baisha County, Danzhou City, Wuzhishan City and Sanya City. Additionally, we collected several ancient local varieties and endangered germplasm resources such as ‘Jiezi rice’ and ‘Wuzhishan maize’. This study serves as a reference for the conservation, development and utilization of local food crop germplasm resources in Hainan Province and lays the foundation for breeding and developing new varieties.
Research on stress damage induced by weaning and its underlying mechanisms in squabs is notably scarce. The study was designed to uncover the potential mechanisms behind the intestinal epithelial barrier impairment due to early weaning (EW) in squabs by evaluating the function of intestinal epithelial barrier, the balance of T helper cell (Th) subsets, and the link between them. A total of 160 hatched squabs were randomly assigned to two groups: one received artificial pigeon milk starting from day 7 post-hatching, while the other group continued to be nourished by their parent pigeons. Ileal tissue and serum samples from eight replicates were gathered for analyses at intervals of 1, 4, 7, 10, 14, and 21 days after weaning. Results showed that body weight of squabs in the EW group decreased significantly from 1 day after weaning and continued throughout the experiment period. The serum endotoxin, diamine oxidase of weaned squabs increased significantly. The mRNA expression of ileal tight junction proteins of weaned squabs was significantly downregulated at multiple time points from 1 to 21 days after weaning. Compared to squabs in the control group, the weaned squabs exhibited immune imbalances of Th1/Th2 and Th17/Treg in ileum, characterized by abnormal expression of specific transcription factors of Th1, Th2, Th17, and Treg, as well as abnormal concentrations of differentiation-inducing cytokines and effector cytokines. Mantel tests showed that the changes of factors related to the differentiation of Th17/Treg cell subsets were significantly correlated with the diamine oxidase, endotoxin level, and the CDLN1 mRNA expression. Summarily, EW could lead to impaired growth, compromised intestinal epithelial barrier function and an imbalance in the differentiation of Th cell subsets in squabs, among which the dysbalance between Th17 and Treg cells appeared to be more closely associated with the damage of the intestinal epithelial barrier function in early weaned squabs.
In this study, we investigate the sedimentation of spheroidal particles in an initially quiescent fluid by means of particle-resolved direct numerical simulations. Settling particles with three different shapes – oblate spheroid, sphere and prolate spheroid – but fixed Galileo number $Ga=80$ and density ratio $\gamma =2$ at volume fraction $\phi =1\%$ are considered. Oblate and prolate particles are found to form column-like clusters as a consequence of the wake-induced hydrodynamic interactions in the suspension. This effect, together with the change of particle orientation, enhances the mean settling velocity of the dispersed phase. In contrast, spherical particles do not exhibit clustering, and settle with hindered velocity in the suspension. Furthermore, we focus on the pseudo-turbulence induced by the settling particles. We report a non-Gaussian distribution of the fluid velocity and a robust $-3$ power law of the energy spectra. By scrutinizing the scale-by-scale budget, we find that the anisotropy of the particle-induced pseudo-turbulence is manifested not only by the uneven allocation of turbulence kinetic energy among the different velocity components, but also by the anisotropic distribution of energy in spectral space. The fluid–particle interactions inject energy into the vertical velocity component, thus sustaining the turbulence, while pressure redistributes the kinetic energy among the different velocity components. The clustering of oblate/prolate particles significantly increases the energy input at large scales, forcing elongated flow structures. Moreover, the redistribution and nonlinear transfer of the energy are also intensified in the presence of particle clustering, which reduces the anisotropy of the particle-induced pseudo-turbulence.
In the present study, we investigate the modulation effects of particles on compressible turbulent boundary layers at a Mach number of 6, employing high-fidelity direct numerical simulations based on the Eulerian–Lagrangian point-particle approach. Our findings reveal that the mean and fluctuating velocities in particle-laden flows exhibit similarities to incompressible flows under compressibility transformations and semi-local viscous scaling. With increasing particle mass loading, the reduction in Reynolds shear stress and the increase in particle feedback force constitute competing effects, leading to a non-monotonic variation in skin friction, particularly in turbulence over cold walls. Furthermore, dilatational motions near the wall, manifested as travelling-wave structures, persist under the influence of particles. However, these structures are significantly weakened due to the suppression of solenoidal bursting events and the negative work exerted by the particle feedback force. These findings align with the insight of Yu et al. (J. Fluid. Mech., vol. 984, 2024, A44), who demonstrated that dilatational motions are generated by the vortices associated with intense bursting events, rather than acting as evolving perturbations beneath velocity streaks. The attenuation of travelling-wave structures at higher particle mass loadings also contributes to the reduction in the intensities of wall shear stress and heat flux fluctuations, as well as the probability of extreme events. These results highlight the potential of particle-laden flows to mitigate aerodynamic forces and thermal loads in high-speed vehicles.
The study aimed to determine the patterns of the vestibular and ocular motor findings in cerebellar infarction (CI).
Methods:
We retrospectively analyzed vestibular and ocular motor test results in 23 CI patients and 32 acute unilateral vestibulopathy (AUVP) patients.
Results:
Among CI cases, the posterior inferior cerebellar artery (PICA) was the most commonly affected territory. Vertigo is predominantly observed in patients with infarctions affecting PICA or anterior inferior cerebellar artery (AICA). Lesions involving the superior cerebellar artery (SCA) mainly result in dizziness. Saccadic intrusion and oscillation, abnormal bilateral smooth pursuit (SP) and abnormal saccades were more prevalent in the CI group than in the AUVP group (all p < 0.05). Horizontal saccades were abnormal in 11 patients (47.8%) with CI. All AUVP patients had normal horizontal saccades. Horizontal SP was impaired in 13 patients (56.5%) with CI, with decreased gain toward both sides in 10 and toward 1 side in 3. Impaired horizontal SP was noted in nine patients (28.1%) with AUVP, with decreased gain toward the contralesional side in all cases. A total of 26.3% (5/19) of patients with CI exhibited subjective visual vertical (SVV) deviation toward the affected side and 31.6% (6/19) toward the unaffected side. In patients with AUVP, 70.0% (21/30) showed SVV deviation toward the affected side.
Conclusions:
Vertigo is mainly seen in PICA or AICA infarctions. SCA lesions mostly cause dizziness. Saccadic intrusion and oscillation, abnormal bilateral SP and abnormal saccades contribute to the diagnosis of CI. Moreover, SVV deviation varies depending on the cerebellar structures involved.
Depression has been linked to disruptions in resting-state networks (RSNs). However, inconsistent findings on RSN disruptions, with variations in reported connectivity within and between RSNs, complicate the understanding of the neurobiological mechanisms underlying depression.
Methods
A systematic literature search of PubMed and Web of Science identified studies that employed resting-state functional magnetic resonance imaging (fMRI) to explore RSN changes in depression. Studies using seed-based functional connectivity analysis or independent component analysis were included, and coordinate-based meta-analyses were performed to evaluate alterations in RSN connectivity both within and between networks.
Results
A total of 58 studies were included, comprising 2321 patients with depression and 2197 healthy controls. The meta-analysis revealed significant alterations in RSN connectivity, both within and between networks, in patients with depression compared with healthy controls. Specifically, within-network changes included both increased and decreased connectivity in the default mode network (DMN) and increased connectivity in the frontoparietal network (FPN). Between-network findings showed increased DMN–FPN and limbic network (LN)–DMN connectivity, decreased DMN–somatomotor network and LN–FPN connectivity, and varied ventral attention network (VAN)–dorsal attentional network (DAN) connectivity. Additionally, a positive correlation was found between illness duration and increased connectivity between the VAN and DAN.
Conclusions
These findings not only provide a comprehensive characterization of RSN disruptions in depression but also enhance our understanding of the neurobiological mechanisms underlying depression.
Broadband frequency-tripling pulses with high energy are attractive for scientific research, such as inertial confinement fusion, but are difficult to scale up. Third-harmonic generation via nonlinear frequency conversion, however, remains a trade-off between bandwidth and conversion efficiency. Based on gradient deuterium deuterated potassium dihydrogen phosphate (KDxH2-xPO4, DKDP) crystal, here we report the generation of frequency-tripling pulses by rapid adiabatic passage with a low-coherence laser driver facility. The efficiency dependence on the phase-matching angle in a Type-II configuration is studied. We attained an output at 352 nm with a bandwidth of 4.4 THz and an efficiency of 36%. These results, to the best of our knowledge, represent the first experimental demonstration of gradient deuterium DKDP crystal in obtaining frequency-tripling pulses. Our research paves a new way for developing high-efficiency, large-bandwidth frequency-tripling technology.
Zircon U-Pb geochronology, geochemistry and Hf isotope analysis of supracrustal rocks in the Anshan-Benxi area in the northeastern part of the North China Craton can help constrain their petrogenesis and tectonic background, providing evidence for a further investigation of the late Neoarchaean tectonic environment in the Anshan-Benxi area. The primary rock types observed among the supracrustal rocks in the Anshan-Benxi area comprise amphibolite, metamorphic rhyolite, metamorphic sandstone, chlorite schist, actinolite schist, among others. SHRIMP zircon U-Pb dating indicates that magmatic zircons from the amphibolite (GCN-1) formed at 2553 ± 18Ma. Similarly, LA-ICP-MS zircon U-Pb dating reveals that magmatic zircons from the metamorphic rhyolite (G2304-1) were formed at 2457 ± 35Ma. The peak age of the metamorphic sandstone is determined to be approximately 2500Ma, suggesting that the supracrustal rocks in the Anshan-Benxi area originated in the late Neoarchaean. The protoliths of sericite quartz schist and metamorphic rhyolite are identified as rhyolitic volcanic rocks, displaying a right-leaning distribution pattern of rare earth elements (REEs). On the other hand, actinolite schist, chlorite schist and amphibolite are classified as basaltic volcanic rocks, exhibiting a flat REE pattern with a weak negative Eu anomaly. The εHf(t) value of metamorphic rhyolite ranges between -1.19 and -1.47, with a two- stage depleted mantle model age of tDM2(Ma) = 2922–3132 Ma. The protolith magma of sericite quartz schist and metamorphic rhyolite originates from partial melting of 3.0Ga basaltic crust, while the source of actinolite schist, chlorite schist and amphibolite are mainly derived from the mantle. In summary, the findings suggest that plate already existed in the late Neoarchaean or earlier, with magmatism in the Anshan-Benxi area likely occurring within an arc tectonic environment linked to plate subduction.
An optical spectrometer system based on 60 channels of fibers has been designed and employed to diagnose light emissions from laser–plasma interactions. The 60 fiber collectors cover an integrated solid angle of $\pi$, enabling the measurement of global energy losses in a symmetrical configuration. A detecting spectral range from ultraviolet to near-infrared, with angular distribution, allows for the understanding of the physical mechanisms involving various plasma modes. Experimental measurements of scattered lights from a conical implosion driven by high-energy nanosecond laser beams at the Shenguang-II Upgrade facility have been demonstrated, serving as reliable diagnostics to characterize laser absorption and energy losses from laser–plasma instabilities. This compact diagnostic system can provide comprehensive insights into laser energy coupling in direct-drive inertial confinement fusion research, which are essential for studying the driving asymmetry and improving the implosion efficiencies.
We report a high-power ultra-narrow fiber-coupled diode laser using a Faraday anomalous dispersion optical filter (FADOF) as an external cavity element. An external cavity suitable for both the fiber-coupled package and FADOF configuration has been proposed. Using a 87Rb-based FADOF as the frequency-selective element, we realized a 103 W continuous laser output with a uniform circular beam. The center wavelength was precisely locked at the D2 line of the Rb resonance, and the bandwidth was narrowed from 1.8 nm (free-running, full width at half maximum (FWHM)) to 0.013 nm (6.9 GHz, FWHM). The side mode suppression ratio reached 31 dB. Such diode lasers with precise wavelength and high spectral brightness have critical applications in many fields, such as high-energy gas laser pumping, spin-exchange optical pumping, Raman spectroscopy and nonlinear optics.
In this study we investigate the sedimentation of prolate spheroids in a quiescent fluid by means of the particle-resolved direct numerical simulation. With the increase of the particle volume fraction $\phi$ from $0.1\,\%$ to $10\,\%$, we observe a non-monotonic variation of the mean settling velocity of particles, $\langle V_s \rangle$. By virtue of the Voronoi analysis, we find that the degree of particle clustering is highest when $\langle V_s \rangle$ reaches the local maximum at $\phi =1\,\%$. Under the swarm effect, clustered particles are found to preferentially sample downward fluid flows in the wake regions, leading to the enhancement of the settling speed. As for lower or higher volume fractions, the tendency of particle clustering and the preferential sampling of downward flows are attenuated. The hindrance effect becomes predominant when the volume fraction exceeds 5 % and reduces $\langle V_s \rangle$ to less than the isolated settling velocity. Particle orientation plays a minor role in the mean settling velocity, although individual prolate particles still tend to settle faster in suspensions when they deviate more from the broad-side-on alignment. Moreover, we also demonstrate that particles are prone to form column-like microstructures in dilute suspensions under the effect of wake-induced hydrodynamic attractions. The radial distribution function is higher at a lower volume fraction. As a result, the collision rate scaled by the particle number density decreases with the increasing volume fraction. By contrast, as another contribution to the particle collision rate, the relative radial velocity for nearby particles shows a minor degree of variation due to the lubrication effect.