We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents a numerical study on the flow around two tandem circular cylinders beneath a free surface at a Reynolds number of $180$. The free-surface effects on the wake dynamics and hydrodynamic forces are investigated through a parametric study, covering a parameter space of gap ratios from $0.20$ to $2.00$, spacing ratios from $1.50$ to $4.00$ and Froude numbers from $0.2$ to $0.8$. A jet-like flow accompanied by a shear layer of positive vorticity separating from the free surface is formed in the wake at small gap ratios, which significantly alters the wake pattern through its dynamic behaviours. At shallow submergence depths, the three-dimensional wake transitions from mode B to mode A as the distance between the cylinders increases. As submergence depth increases, the wavy deformation of the primary vortex cores disappears in the wake, and the flow transitions to a two-dimensional state. Higher Froude numbers can extend the effect of the free surface to deeper submergence depths. The critical spacing ratio tends to be larger at higher Froude numbers. Furthermore, the free-surface deformation is examined. The free-surface profile typically comprises a hydraulic jump immediately ahead of the upstream cylinder, trapped waves in the vicinity of the two tandem cylinders and well-defined travelling waves on the downstream side. The frequencies of the waves cluster around the vortex shedding frequency, indicating a close association between the generation of waves and the vortex shedding process.
We investigated the impact of COVID-19 restrictions on the duration of untreated psychosis (DUP). First-episode psychosis admissions (n = 101) to the STEP Clinic in Connecticut showed DUP reduction (P = 0.0015) during the pandemic, with the median reducing from 208 days pre-pandemic to 56 days in the early pandemic period, and subsequently increasing to 154 days (P = 0.0281). Time from psychosis onset to antipsychotic prescription decreased significantly in the pandemic (P = 0.0183), with the median falling from 117 to 35 days. This cohort study demonstrates an association between greater pandemic restrictions and marked DUP reduction, and provides insights for future early detection efforts.
Accurately converting satellite instantaneous evapotranspiration (λETi) over time to daily evapotranspiration (λETd) is crucial for estimating regional evapotranspiration from remote sensing satellites, which plays an important role in effective water resource management. In this study, four upscaling methods based on the principle of energy balance, including the evaporative fraction method (Eva-f method), revised evaporative fraction method (R-Eva-f method), crop coefficient method (Kc-ET0 method) and direct canopy resistance method (Direct-rc method), were validated based on the measured data of the Bowen ratio energy balance system (BREB) in maize fields in northwestern (NW) and northeastern (NE) China (semi-arid and semi-humid continental climate regions) from 2021 to 2023. Results indicated that Eva-f and R-Eva-f methods were superior to Kc-ET0 and Direct-rc methods in both climatic regions and performed better between 10:00 and 11:00, with mean absolute errors (MAE) and coefficient of efficiency (ɛ) reaching <10 W/m2 and > 0.91, respectively. Comprehensive evaluation of the optimal upscaling time using global performance indicators (GPI) showed that the Eva-f method had the highest GPI of 0.59 at 12:00 for the NW, while the R-Eva-f method had the highest GPI of 1.18 at 11:00 for the NE. As a result, the Eva-f approach is recommended as the best way for upscaling evapotranspiration in NW, with 12:00 being the ideal upscaling time. The R-Eva-f method is the optimum upscaling method for the Northeast area, with an ideal upscaling time of 11:00. The comprehensive results of this study could be useful for converting λETi to λETd.
Imitation from Observation (IfO) prompts the robot to imitate tasks from unlabeled videos via reinforcement learning (RL). The performance of the IfO algorithm depends on its ability to extract task-relevant representations since images are informative. Existing IfO algorithms extract image representations by using a simple encoding network or pre-trained network. Due to the lack of action labels, it is challenging to design a supervised task-relevant proxy task to train the simple encoding network. Representations extracted by a pre-trained network such as Resnet are often task-irrelevant. In this article, we propose a new approach for robot IfO via multimodal observations. Different modalities describe the same information from different sides, which can be used to design an unsupervised proxy task. Our approach contains two modules: the unsupervised cross-modal representation (UCMR) module and a self-behavioral cloning (self-BC)-based RL module. The UCMR module learns to extract task-relevant representations via a multimodal unsupervised proxy task. The Self-BC for further offline policy optimization collects successful experiences during the RL training. We evaluate our approach on the real robot pouring water task, quantitative pouring task, and pouring sand task. The robot achieves state-of-the-art performance.
The language-guided visual robotic grasping task focuses on enabling robots to grasp objects based on human language instructions. However, real-world human-robot collaboration tasks often involve situations with ambiguous language instructions and complex scenarios. These challenges arise in the understanding of linguistic queries, discrimination of key concepts in visual and language information, and generation of executable grasping configurations for the robot’s end-effector. To overcome these challenges, we propose a novel multi-modal transformer-based framework in this study, which assists robots in localizing spatial interactions of objects using text queries and visual sensing. This framework facilitates object grasping in accordance with human instructions. Our developed framework consists of two main components. First, a visual-linguistic transformer encoder is employed to model multi-modal interactions for objects referred to in the text. Second, the framework performs joint spatial localization and grasping. Extensive ablation studies have been conducted on multiple datasets to evaluate the advantages of each component in our model. Additionally, physical experiments have been performed with natural language-driven human-robot interactions on a physical robot to validate the practicality of our approach.
The third-order law links energy transfer rates in the inertial range of magneto- hydrodynamic (MHD) turbulence with third-order structure functions. Anisotropy, a typical property in the solar wind, challenges the applicability of the third-order law with the isotropic assumption. To shed light on the energy transfer process in the presence of anisotropy, we conducted direct numerical simulations of forced MHD turbulence with normal and hyper-viscosity under various strengths of the external magnetic field ($B_0$), and calculated three forms of third-order structure function with or without averaging of the azimuthal or polar angles with respect to $B_0$ direction. Correspondingly, three estimated energy transfer rates were obtained. The result shows that the peak of normalized third-order structure function occurs at larger scales closer to the $B_0$ direction, and the maximum of longitudinal transfer rates shifts away from the $B_0$ direction at larger $B_0$. Compared with normal viscous cases, hyper-viscous cases can attain better separated inertial range, thus facilitating the estimation of the energy cascade rates. We find that the widespread use of the isotropic form of the third-order law in estimating the energy transfer rates is questionable in some cases, especially when the anisotropy arising from the mean magnetic field is inevitable. In contrast, the direction-averaged third-order structure function properly accounts for the effect of anisotropy and predicts the energy transfer rates and inertial range accurately, even at very high $B_0$. With limited statistics, the third-order structure function shows a stronger dependence on averaging of azimuthal angles than the time, especially for high $B_0$ cases. These findings provide insights into the anisotropic effect on the estimation of energy transfer rates.
Although ketamine can rapidly decrease suicidal ideation (SI), its neurobiological mechanism of action remains unclear. Several areas of the cingulate cortex have been implicated in SI; therefore, we aimed to explore the neural correlates of the anti-suicidal effect of ketamine with cingulate cortex functional connectivity (FC) in depression.
Methods
Forty patients with unipolar or bipolar depression with SI underwent six infusions of ketamine over 2 weeks. Clinical symptoms and resting-state functional magnetic resonance imaging data were obtained at baseline and on day 13. Remitters were defined as those with complete remission of SI on day 13. Four pairs of cingulate cortex subregions were selected: the subgenual anterior cingulate cortex (sgACC), pregenual anterior cingulate cortex (pgACC), anterior mid-cingulate cortex (aMCC), and posterior mid-cingulate cortex (pMCC), and whole-brain FC for each seed region was calculated.
Results
Compared with non-remitters, remitters exhibited increased FC of the right pgACC–left middle occipital gyrus (MOG) and right aMCC–bilateral postcentral gyrus at baseline. A high area under the curve (0.91) indicated good accuracy of the combination of the above between-group differential FCs as a predictor of anti-suicidal effect. Moreover, the change of SI after ketamine infusion was positively correlated with altered right pgACC–left MOG FC in remitters (r = 0.66, p = 0.001).
Conclusions
Our findings suggest that the FC of some cingulate cortex subregions can predict the anti-suicidal effect of ketamine and that the anti-suicidal mechanism of action of ketamine may involve alteration of FC between the right pgACC and left MOG.
As intense, ultrashort, kHz-repetition-rate laser systems become commercially available, pulse cumulative effects are critical for laser filament-based applications. In this work, the pulse repetition-rate effect on femtosecond laser filamentation in air was investigated both numerically and experimentally. The pulse repetition-rate effect has negligible influence at the leading edge of the filament. Clear intensity enhancement from a high-repetition pulse is observed at the peak and tailing edge of the laser filament. As the repetition rate of the laser pulses increases from 100 to 1000 Hz, the length of the filament extends and the intensity inside the filament increases. A physical picture based on the pulse repetition-rate dependent ‘low-density hole’ effect on filamentation is proposed to explain the obtained results well.
We report a compact, tunable, self-starting, all-fiber laser-based asynchronous optical sampling (ASOPS) system. Two Er-doped fiber oscillators were used as the pulsed-laser source, whose repetition rate could be set at 100 MHz with a tuning range of 1.25 MHz through a fiber delay line. By employing phase-locked and temperature control loops, the repetition rate offset of the two lasers was stabilized with 7.13 × 10−11 fractional instability at an average time of 1 s. Its capabilities in the terahertz regime were demonstrated by terahertz time-domain spectroscopy, achieving a spectral bandwidth of 3 THz with a dynamic range of 30 dB. The large range of repetition rate adjustment in our ASOPS system has the potential to be a powerful tool in the terahertz regime.
The terminal Ediacaran Shibantan biota (~550–543 Ma) from the Dengying Formation in the Yangtze Gorges area of South China represents one of the rare examples of carbonate-hosted Ediacara-type macrofossil assemblages. In addition to the numerically dominant taxa—the non-biomineralizing tubular fossil Wutubus and discoidal fossils Aspidella and Hiemalora, the Shibantan biota also bears a moderate diversity of frondose fossils, including Pteridinium, Rangea, Arborea, and Charnia. In this paper, we report two species of the rangeomorph genus Charnia, including the type species Charnia masoni Ford, 1958 emend. and Charnia gracilis new species, from the Shibantan biota. Most of the Shibantan Charnia specimens preserve only the petalodium, with a few bearing the holdfast and stem. Despite overall architectural similarities to other Charnia species, the Shibantan specimens of Charnia gracilis n. sp. are distinct in their relatively straight, slender, and more acutely angled first-order branches. They also show evidence that may support a two-stage growth model and a epibenthic sessile lifestyle. Charnia fossils described herein represent one of the youngest occurrences of this genus and extend its paleogeographic and stratigraphic distributions. Our discovery also highlights the notable diversity of the Shibantan biota, which contains examples of a wide range of Ediacaran morphogroups.
To assess urban–rural disparities in the association between long-term exposure to high altitude and malnutrition among children under 5 years old.
Design:
A three-stage, stratified, cluster sampling was used to randomly select eligible individuals from July to October 2020. The data of participants, including demographic characteristics, altitude of residence, and nutritional status, were collected via questionnaire and physical examination.
Setting:
Tibet, China.
Participants:
Children under 5 years old in Tibet.
Results:
Totally, 1975 children under 5 years old were included in this study. We found that an additional 1000 m increase in altitude was associated with decreased Z-scores of height-for-age (β = –0·23, 95 % CI: –0·38, –0·08), Z-scores of weight-for-age (β = –0·24, 95 % CI: –0·39, –0·10). The OR for stunting and underweight were 2·03 (95 % CI: 1·51 to 2·73) and 2·04 (95 % CI: 1·38 to 3·02) per 1000 m increase in altitude, respectively; and OR increased rapidly at an altitude above 3500 m. The effects of long-term exposure to high altitudes on the prevalence of underweight in rural children were higher than that in urban children (P < 0·05).
Conclusions:
High-altitude exposure is tightly associated with malnutrition among children under 5 years old. Improving children’s nutrition is urgently needed in areas above 3500 m, especially in rural ones.
Two new genera and six new species of trilobites are systematically documented herein: Sinagnostus mirabilis new genus new species, Yanpingia punctata n. gen. n. sp., Illaenus taoyuanensis n. sp., Panderia striolatus n. sp., Nileus yichongqiaoensis n. sp., and Paratiresias peculiaris n. sp. The materials were collected from the Darriwilian (late Middle Ordovician) strata in the Upper Yangtze Region, South China. Also provided is an emended diagnosis of the genus Paratiresias based on the new species Paratiresias peculiaris, which is the oldest known species of this genus with an extremely narrow (sag. and exsag.) preglabellar field. Those Chinese species previously referred to Nanillaenus are reassigned to Illaenus sensu lato. These trilobites add new data for the Darriwilian trilobite macroevolution and show highly endemic to South China and the faunal exchanges between South China and Tarim, Kazakhstan, Alborz, as well as Sibumasu and North China.
The effects of early thiamine use on clinical outcomes in critically ill patients with acute kidney injury (AKI) are unclear. The purpose of this study was to investigate the associations between early thiamine administration and clinical outcomes in critically ill patients with AKI. The data of critically ill patients with AKI within 48 h after ICU admission were extracted from the Medical Information Mart for Intensive Care III (MIMIC III) database. PSM was used to match patients early receiving thiamine treatment to those not early receiving thiamine treatment. The association between early thiamine use and in-hospital mortality due to AKI was determined using a logistic regression model. A total of 15 066 AKI patients were eligible for study inclusion. After propensity score matching (PSM), 734 pairs of patients who did and did not receive thiamine treatment in the early stage were established. Early thiamine use was associated with lower in-hospital mortality (OR 0·65; 95 % CI 0·49, 0·87; P < 0·001) and 90-d mortality (OR 0·58; 95 % CI 0·45, 0·74; P < 0·001), and it was also associated with the recovery of renal function (OR 1·26; 95 % CI 1·17, 1·36; P < 0·001). In the subgroup analysis, early thiamine administration was associated with lower in-hospital mortality in patients with stages 1 to 2 AKI. Early thiamine use was associated with improved short-term survival in critically ill patients with AKI. It was possible beneficial role in patients with stages 1 to 2 AKI according to the Kidney Disease: Improving Global Outcomes criteria.
This study examined the effect of a cryoprotectant with and without pentoxifylline supplementation on the motility and viability of human testicular sperm, both before and after freezing. Testicular samples were obtained from 68 patients with azoospermia who came to the Andrology Service of West China Second University Hospital, Sichuan University, for testicular biopsies from December 2019 to April 2020. All patients were assigned randomly to two groups: experimental, whose testicular sperm were added to the cryoprotectant with pentoxifylline, and the control, whose testicular sperm were added to the cryoprotectant without pentoxifylline. Both groups used the same freezing and thawing methods. Testicular sperm motility in the experimental group was significantly higher than that of the control group, both before and after cryopreservation. The recovery rate of sperm motility in the experimental group was significantly higher than that of the control group. The percentage of samples with motile testicular sperm in the experimental group was significantly higher than that of the control group after thawing. Sperm viability was unchanged between the experimental and control groups, both before and after freezing. Overall, a pentoxifylline-supplemented cryoprotectant can significantly improve the motility of testicular sperm before and after cryopreservation.
As an attractive collector medium for hypervelocity particles, combined with outstanding physical properties and suitable compositional characteristics, SiO2 aerogel has been deployed on outer space missions and laser shock-loaded collection experiments. In this paper, impact experiments were conducted to understand the penetration process of irregular grains, irregular Al2O3 grains with two different sizes and speeds (~110 μm@7 km/s, ~251 μm@2.3 km/s) at various density silica aerogels. By classifying the shapes of projectile residues and tracks, the morphology of tracks was analyzed. It was observed that there were several kinds of typical tracks in the penetration of irregular grains, accompanied by residues with the shapes of near-sphere, polyhedron, streamlined body wedge, and rotator. The rotational behavior was demonstrated by the final status of one flake projectile as direct evidence. In addition, there was no obvious relationship between the track length and experimental parameters, which may be caused by the uncertain interaction between aerogels and irregular particles. In addition, it confirmed the existence of fragmentation, melting situation by observing the shape of the impact entrance hole. At the same time, optical coherence tomography was used to observe the detail of tracks clearly, which provided a method to characterize the tracks nondestructively.
A fever clinic within a hospital plays a vital role in pandemic control because it serves as an outpost for pandemic discovery, monitoring and handling. As the outbreak of coronavirus disease 2019 (COVID-19) in Wuhan was gradually brought under control, the fever clinic in the West Campus of Wuhan Union Hospital introduced a new model for construction and management of temporary mobile isolation wards. A traditional battlefield hospital model was combined with pandemic control regulations, to build a complex of mobile isolation wards that used adaptive design and construction for medical operational, medical waste management and water drainage systems. The mobile isolation wards allowed for the sharing of medical resources with the fever clinic. This increased the capacity and efficiency of receiving, screening, triaging and isolation and observation of patients with fever. The innovative mobile isolation wards also controlled new sudden outbreaks of COVID-19. We document the adaptive design and construction model of the novel complex of mobile isolation wards and explain its characteristics, functions and use.
We aim to determine the correlation between parental rearing, personality traits, and obsessive–compulsive disorder (OCD) in different quantiles. In particular, we created an intermediary effect model in which parental rearing affects OCD through personality traits. All predictors were measured at the time of the survey, comprising parental rearing (paternal rearing and maternal rearing), demographics (grade and gender), and personality traits (neuroticism, extroversion, and psychoticism). These results suggest that (a) paternal emotional warmth was negatively correlated with OCD at the 0.40–0.80 quantile, while maternal emotional warmth was positively correlated with the OCD at the 0.45–0.69 quantile. (b) The correlation between negative parental rearing and OCD ranged from the 0.67 to 0.95 quantile for paternal punishment, 0.14–0.82 quantile for paternal overprotection, 0.05–0.36 and >0.50 quantile for maternal over-intervention and overprotection, and 0.08–0.88 quantile for maternal rejection. (c) Extroversion, neuroticism, and psychoticism were not only associated with OCD in a particular quantile but also mediated between parental rearing (namely parental emotional warmth, paternal punishment, paternal overprotection, maternal rejection, maternal over-intervention, and overprotection) and OCD. These findings provide targets for early interventions of OCD to improve the form of family education and personality traits and warrant validation.
Cable is the most important bearing structure of the cable-stayed bridges. Its safety has been of crucial public concern. Traditional manual cable inspection method has many defects such as low inspection efficiency, poor reliability and hazardous working environment. In this paper, a new wirelessly controlled cable-climbing robot enabling safe and convenient inspection of stay cables is proposed. The designed robot is composed of two modules, joined by four turnbuckles to form a closed structure that clasps the cable. The robot is controlled wirelessly by a ground-based station, and a DC power is supplied via an onboard lithium battery. The climbing principle and mechanical structure of this robot are introduced. The static model of the robot during obstacle negotiation is established. The relationships of the driving force and resistance with obstacle height to determine the obstacle-negotiation capability of the robot are obtained. The effects of cable diameter, cable inclination and preload force on obstacle climbing ability of the robot are also analyzed. The experiments verify that the robot could climb random inclined cables and overcome an obstacle of 2.42 mm in height with a mass of 5 kg payload.
In this paper, the generation of relativistic electron mirrors (REMs) and the reflection of an ultra-short laser off this mirrors are discussed, applying two-dimensional particle-in-cell (2D-PIC) simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapidly expanding. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads the resonance between laser and REM. The reflected radiation near this interval and the corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, certain part of the reflected field could be selectively amplified or depressed, leading to the selectively adjusting of the corresponding spectra.
We report on the generation of a mid-infrared (mid-IR) frequency comb with a maximum average output power of 250 mW and tunability in the 2.7–4.0 μm region. The approach is based on a single-stage difference frequency generation (DFG) starting from a compact Yb-doped fiber laser system. The repetition rate of the near-infrared (NIR) comb is locked at 75 MHz. The phase noise of the repetition rate in the offset-free mid-IR comb system is measured and analyzed. Except for the intrinsic of NIR comb, environmental noise at low frequency and quantum noise at high frequency from the amplifier chain and nonlinear spectral broadening are the main noise sources of broadening the linewidth of comb teeth, which limits the precision of mid-IR dual-comb spectroscopy.