We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Internet addiction (IA) refers to excessive internet use that causes cognitive impairment or distress. Understanding the neurophysiological mechanisms underpinning IA is crucial for enabling an accurate diagnosis and informing treatment and prevention strategies. Despite the recent increase in studies examining the neurophysiological traits of IA, their findings often vary. To enhance the accuracy of identifying key neurophysiological characteristics of IA, this study used the phase lag index (PLI) and weighted PLI (WPLI) methods, which minimize volume conduction effects, to analyze the resting-state electroencephalography (EEG) functional connectivity. We further evaluated the reliability of the identified features for IA classification using various machine learning methods.
Methods
Ninety-two participants (42 with IA and 50 healthy controls (HCs)) were included. PLI and WPLI values for each participant were computed, and values exhibiting significant differences between the two groups were selected as features for the subsequent classification task.
Results
Support vector machine (SVM) achieved an 83% accuracy rate using PLI features and an improved 86% accuracy rate using WPLI features. t-test results showed analogous topographical patterns for both the WPLI and PLI. Numerous connections were identified within the delta and gamma frequency bands that exhibited significant differences between the two groups, with the IA group manifesting an elevated level of phase synchronization.
Conclusions
Functional connectivity analysis and machine learning algorithms can jointly distinguish participants with IA from HCs based on EEG data. PLI and WPLI have substantial potential as biomarkers for identifying the neurophysiological traits of IA.
Hand, foot, and mouth disease (HFMD) shows spatiotemporal heterogeneity in China. A spatiotemporal filtering model was constructed and applied to HFMD data to explore the underlying spatiotemporal structure of the disease and determine the impact of different spatiotemporal weight matrices on the results. HFMD cases and covariate data in East China were collected between 2009 and 2015. The different spatiotemporal weight matrices formed by Rook, K-nearest neighbour (KNN; K = 1), distance, and second-order spatial weight matrices (SO-SWM) with first-order temporal weight matrices in contemporaneous and lagged forms were decomposed, and spatiotemporal filtering model was constructed by selecting eigenvectors according to MC and the AIC. We used MI, standard deviation of the regression coefficients, and five indices (AIC, BIC, DIC, R2, and MSE) to compare the spatiotemporal filtering model with a Bayesian spatiotemporal model. The eigenvectors effectively removed spatial correlation in the model residuals (Moran’s I < 0.2, p > 0.05). The Bayesian spatiotemporal model’s Rook weight matrix outperformed others. The spatiotemporal filtering model with SO-SWM was superior, as shown by lower AIC (92,029.60), BIC (92,681.20), and MSE (418,022.7) values, and higher R2 (0.56) value. All spatiotemporal contemporaneous structures outperformed the lagged structures. Additionally, eigenvector maps from the Rook and SO-SWM closely resembled incidence patterns of HFMD.
Objectives/Goals: Ventilator-associated pneumonia (VAP) is an infection caused by bacteria, viruses, or fungi during mechanical ventilation. We analyzed a cohort of COVID-19 patients admitted to the intensive care unit with respiratory failure with different VAP outcomes. We hypothesize that the multiomics data can help predict VAP development within this cohort. Methods/Study Population: We recruited participants from a cohort on a NYU IRB protocol (i22–00616), who had COVID19 respiratory failure, admitted to ICU, and required invasive mechanical ventilation (n = 245). We collected and analyzed research specimens (bronchoalveolar lavage [BAL, n = 213], tracheal aspirates [n = 246], background [n = 18]) and clinical cultures (sputum and BAL) for 245 participants. A panel of experts adjudicated VAP within the cohort, resulting in 92 VAP diagnoses. We annotated metatranscriptome (Illumina NovaSeq) using a Kraken/Bracken database, and KEGG for functional annotation of transcriptome data (Illumina HiSeq). We used edgeR (v.4.0.16) to analyze differential expression of metatranscriptome and transcriptome data. Results/Anticipated Results: We diagnosed VAP in n = 92 (38%) participants. We found significant differences in days of overall hospital stay (p Discussion/Significance of Impact: VAP is a serious complication of mechanical ventilation, and oral commensals alter the lung microbiome and host immunity. We identified a transcriptome-metatranscriptome signature that identifies those at VAP risk. VAP was associate with both pro- and anti-inflammatory gene expression resulting in increased risk for lower airway infection.
The exploration of molecular characteristics has emerged as a prominent trend to advance precision medicine. The utilization of genetic testing to guide therapy is integral to precision medicine. This study aims to investigate the potential patient populations for the reimbursement of next-generation sequencing (NGS) and assess the budget impact from the perspective of Taiwan’s single insurer, the National Health Insurance Administration.
Methods
To comprehend the scope for medicines with companion diagnostics (CDx) involved, we analyze the U.S. Food and Drug Administration-approved/cleared diagnostic tests, conduct a literature review to identify medicines approved by the European Medicines Agency that require a CDx, and identify the medicines with CDx involved covered by the National Health Insurance (NHI) in Taiwan. Subsequently, we explore the potential reimbursement indications for NGS testing and conduct a budget impact analysis to evaluate the expected financial impact for the NHI over a five-year period. Furthermore, sensitivity analyses are conducted to deal with uncertainty.
Results
We have compiled 13 cancer types for which NGS can serve as a companion diagnostic. These encompass non-small-cell lung cancer, colorectal cancer, breast cancer, ovarian cancer, biliary tract cancer, acute myeloid leukemia, acute lymphoblastic leukemia, melanoma, cholangiocarcinoma, prostate cancer, pancreatic cancer, gastrointestinal stromal tumor, and thyroid cancer/medullary thyroid cancer. The implementation of NGS reimbursement in NHI will benefit 25,000 to 30,000 patients undergoing targeted therapies. The projected incremental budget impact ranges from TWD570 million to TWD650 million (USD19 million to USD22 million) over five years.
Conclusions
This study focuses on evaluating the financial impact of incorporating NGS testing into NHI reimbursement for relevant cancer drug indications. The findings can serve as references for the planning of reimbursement policies. However, with the advancement of precision medicine, it is foreseeable that there will be a broader range of applications for NGS, and its cost will gradually decrease.
While environmental concerns are increasingly driving firms’ strategic decisions, insights into why firms make heterogeneous environmental investments are limited. Taking an institutional view, we explore the effect of institutional complexity resulting from multiple but incongruent institutional logics within an organization on firms’ environmental investments. Using China's mixed-ownership reform as a research context, we identify a unique condition in which institutional complexity arises as the privatization process results in two coexisting but incongruent institutional logics – namely, state and financial logic. We further propose that privatization plays both enabling and constraining roles in state-owned enterprises’ (SOEs’) strategic decisions about environmental investments, depending on the relative dominance of each institutional logic, resulting in an inverted U-shaped relationship between privatization and environmental investments. Moreover, we examine the moderating effects of CEO background characteristics and firms’ external environmental context to uncover how these factors influence the relative dominance of state or financial logic in privatized SOEs, thereby reshaping SOEs’ environmental investments. Analyses of multisource panel data from Chinese listed SOEs from 2013 to 2020 support our theoretical propositions. The findings contribute to the literature on how institutional factors affect firm environmental practices and provide new insights to better understand the influence of institutional complexity on firm strategic actions.
Interlaminar delamination damage is a common and typical defect in the context of structural damage in carbon fiber-reinforced resin matrix composites. The technology to identify such damage is crucial for improving the safety and reliability of structures. In this paper, we fabricated carbon fiber-reinforced composite laminates with different degrees of delamination damage, conducted static load experiments on them and used femtosecond fiber Bragg grating sensors (fsFBG) to determine their structural state to investigate the effects of delamination damage on their performance. We constructed a model to identify damage based on the deep residual shrinkage network, and used experimental data to enable it to identify varying degrees of delamination damage to carbon fiber-reinforced composites with an accuracy of 97.98%.
Fibrosis is a pathological condition that affects various organs by increasing fibrous connective tissue while reducing parenchymal cells. This imbalance can lead to compromised organ function and potential failure, posing significant health risks. The condition’s complexity necessitates the exploration of effective treatments to mitigate its progression and adverse outcomes.
Aims
This study aims to investigate the role of ghrelin, a peptide hormone known for its anti-inflammatory and anti-fibrotic properties, in modulating fibrosis across different organs. By binding to the growth hormone secretagogue receptor type 1a (GHSR-1a), ghrelin has shown potential in attenuating the fibrotic process, particularly through its interaction with the TGF-β signalling pathway.
Methods
An extensive review of clinical and animal model studies focusing on liver, kidney, lung, and myocardial fibrosis was conducted. The primary focus was on examining how ghrelin influences the TGF-β signalling pathway, with an emphasis on the regulation of TGF-β expression and the suppression of Smad signalling molecules. The methodology involved analysing data from various studies to understand ghrelin’s molecular mechanisms in combating fibrosis.
Results
The findings from the reviewed studies indicate that ghrelin exerts significant anti-fibrotic effects across multiple organ systems. Specifically, ghrelin was found to downregulate TGF-β expression and suppress Smad signalling molecules, leading to a marked reduction in fibrous tissue accumulation and preservation of organ function. In liver fibrosis models, ghrelin reduced TGF-β1 levels and Smad3 phosphorylation, while in kidney and cardiac fibrosis, similar protective effects were observed. The data also suggest that ghrelin’s effects are mediated through both canonical and non-canonical TGF-β pathways.
Conclusions
Ghrelin presents a promising therapeutic agent in the management of fibrosis due to its potent anti-inflammatory and anti-fibrotic actions. Its ability to modulate the TGF-β signalling pathway underscores a vital molecular mechanism through which ghrelin can mitigate fibrotic progression in various organs. Future research should focus on further elucidating ghrelin’s molecular interactions and potential clinical applications in fibrosis treatment, offering new avenues for developing effective anti-fibrotic therapies.
The main purpose of this article is to present the nonlinear unsteady behaviour for jet transport aircraft response to serious atmosphere turbulence in cruise flight and to provide the appropriate mitigation concepts for pilots in the pilot training course of the IATA – Loss of Control In-flight (LOC-I) program. The flight data of a twin-jet and a four-jet transport aircraft encountered serious atmosphere turbulence are the study cases for this article. This study uses flight data mining and fuzzy-logic modeling of artificial intelligence techniques to establish nonlinear unsteady aerodynamic models. Since the rapid change of aerodynamic characteristics in turbulence, so the study uses decoupled longitudinal and lateral-directional motion to identify various eigenvalue motion modes of nonlinear unsteady behaviour through digital 6-DOF flight simulation. It is found that the changes of the main flight variables in the aerodynamic scene and flight environment of the two aircraft are different, but the profiles of five eigenvalue motion modes are actually similar. Those similar eigenvalue motion modes can formulate preventive actions related to the flight handling quality for safe and efficient control by pilots to execute the flight tasks. The one with a large drop height during the ups and downs motion between the two is chosen to construct the movement mechanism of nonlinear unsteady behaviours. The assessments of dynamic stability characteristics of nonlinear unsteady behaviour based on the approaches of oscillatory motion and eigenvalue motion modes related to loss of control will be demonstrated in this article. To develop preventive actions, the situation awareness response to the induced mutation of nonlinear unsteady behaviour on the pilot’s operations will be a further research task in the future.
Superhydrophobic (SHPo) surfaces can capture a thin layer of air called a plastron under water to reduce skin friction. Although a ~30 % drag reduction has been recently reported with longitudinal micro-trench SHPo surfaces under a boat and in a towing tank, the results lacked the consistency to establish a clear trend. Designed based on Yu et al. (J. Fluid Mech, vol. 962, 2023, A9), this work develops and tests a series of high-performance SHPo surface coupons that can sustain a pinned plastron underneath a passenger motorboat revamped to reach 14 knots. Importantly, plastrons in a pinned state, not just their existence, are confirmed during flow experiments for the first time. All the drag-reduction data measured on different longitudinal micro-trenches are found to collapse if plotted against slip length in wall units. In comparison, aligned posts and transverse trenches show less and little drag reduction, respectively, confirming the adverse effect of the spanwise slip in turbulent flows. This report not only verifies SHPo surfaces can provide a consistent drag reduction at high speeds in open sea but also shows that one may predict the amount of drag reduction in turbulent flows using the physical slip length obtained for Stokes flows.
The Indo-Pacific Warm Pool (IPWP) significantly influences the global hydrological cycle through its impact on atmospheric-oceanic circulation. However, gaining a comprehensive understanding of the hydrologic climate dynamics within the IPWP and its broader effects on the global climate have been hindered by spatial and temporal limitations in paleoclimate records on orbital timescales. In this study, we reconstructed precipitation records (approximated from δ18Osw-ivc) over the past 450 kyr, based on planktonic foraminiferal Mg/Ca and δ18O data obtained from International Ocean Discovery Program Site U1486 in the western tropical Pacific. The δ18Osw-ivc record revealed a generally consistent pattern with precession variations over the past 450 kyr, closely corresponding to changes in boreal summer insolation at the equator. The δ18Osw-ivc record displayed an anti-phased relationship with Chinese speleothem δ18O records on the precession band, with lower precipitation in the western tropical Pacific and higher precipitation in the East Asia summer monsoon region during periods of high Northern Hemisphere summer insolation. This anti-phased correlation primarily resulted from the north-south migration of the Intertropical Convergence Zone (ITCZ), influenced by the interhemispheric insolation contrast. By considering additional δ18Osw-ivc records from various locations within the IPWP region, we identified synchronous precipitation changes within the IPWP on the precession band. The synchronization of precipitation on both margins of the ITCZ’s seasonal range and differences between central and marginal regions of the ITCZ within the IPWP revealed the expansion and contraction of the ITCZ on precession band.
This study aims to develop a nutrition education intervention to promote healthy eating, and to evaluate the effectiveness of this intervention on healthy eating knowledge, attitude and behaviour among elementary students. A quasi-experimental study was conducted in two elementary schools in Taiwan. The intervention course design included simulation videos, lectures, and the after-school learning worksheet designed for parental involvement. A total of 4 courses along with 4 simulation videos were given to the intervention group. The four course themes were Sugar patrol, Balanced Diet during the Mid-Autumn Festival, Rainbow Fruit and Vegetables, and Smart Dine Out. The study recruited 35 3rd grade students for the intervention group and 30 for the control group. Data were collected from the pre- and post-test questionnaires. The nutrition intervention had significant effects on improving participants’ knowledge about tips for making healthy choices and the necessity of balanced diet, and on attitude toward healthy eating. There was no significant improvement in participants’ healthy eating behaviours. This nutrition education intervention, which utilized simulation videos and encouraged parental involvement, could be recommended for teaching practice in elementary schools to improve healthy eating knowledge and attitude among students.
This experiment aimed to investigate the impacts of tributyrin (TB) dietary supplementation on serum biochemical indices and meat quality characteristics of longissimus thoracis et lumborum (LTL) muscle of lambs after weaning. Thirty healthy Small-Tailed Han female lambs (27.5 ± 4.1 kg; mean ± standard deviation) were randomly assigned to five treatments: basal diet (1) without TB, (2) with 0.5 g/kg TB, (3) with 1.0 g/kg TB, (4) with 2.0 g/kg TB or (5) with 4.0 g/kg TB. Each treatment consisted of six lambs, and the lambs were weaned on d 90 and were raised until d 165. Results showed that supplementing TB significantly promoted serum immunoglobulin concentrations of lambs such as immunoglobulins G, A and M. Besides, TB significantly increased muscle ether extract content, intermuscular fat length, pH value and redness but decreased lightness, drip loss and shear force. In addition, TB significantly elevated inosine-5ʹ-phosphate content and upregulated the relative expressions of genes related to lipid metabolism such as SREBP-1C, SCD, PPARγ, FAS and LPL. The mostly important, TB significantly enhanced essential amino acids (EAAs) and conjugated linoleic acids contents of the LTL muscle, despite it decreased total unsaturated fatty acids level. In conclusion, supplementing TB not only could promote the healthy status of weaned lambs via promoting serum immunity but also may improve nutritional quality of LTL muscle by improving EAA and conjugated linoleic acid contents.
The right inferior frontal gyrus (RIFG) is a potential beneficial brain stimulation target for autism. This randomized, double-blind, two-arm, parallel-group, sham-controlled clinical trial assessed the efficacy of intermittent theta burst stimulation (iTBS) over the RIFG in reducing autistic symptoms (NCT04987749).
Methods
Conducted at a single medical center, the trial enrolled 60 intellectually able autistic individuals (aged 8–30 years; 30 active iTBS). The intervention comprised 16 sessions (two stimulations per week for eight weeks) of neuro-navigated iTBS or sham over the RIFG. Fifty-seven participants (28 active) completed the intervention and assessments at Week 8 (the primary endpoint) and follow-up at Week 12.
Results
Autistic symptoms (primary outcome) based on the Social Responsiveness Scale decreased in both groups (significant time effect), but there was no significant difference between groups (null time-by-treatment interaction). Likewise, there was no significant between-group difference in changes in repetitive behaviors and exploratory outcomes of adaptive function and emotion dysregulation. Changes in social cognition (secondary outcome) differed between groups in feeling scores on the Frith-Happe Animations (Week 8, p = 0.026; Week 12, p = 0.025). Post-hoc analysis showed that the active group improved better on this social cognition than the sham group. Dropout rates did not vary between groups; the most common adverse event in both groups was local pain. Notably, our findings would not survive stringent multiple comparison corrections.
Conclusions
Our findings suggest that iTBS over the RIFG is not different from sham in reducing autistic symptoms and emotion dysregulation. Nonetheless, RIFG iTBS may improve social cognition of mentalizing others' feelings in autistic individuals.
For the launch vehicle attitude control problem, traditional methods can seldom accurately identify the fault types, making the control method lack of pertinence, which largely affects the effect of attitude control. This paper proposes an active fault tolerant control strategy, which mainly includes fault diagnosis and fault tolerant control. In the fault diagnosis part, a small deviation attitude dynamics model of the launch vehicle is established, Kalman filters with different structures are designed to detect and isolate faults through residual changes, and the fault quantity of the actuator is further estimated. In the fault tolerant control part, the following control scheme is adopted according to the above diagnostic information: when the sensor fault is detected, the sensor measurement data is reconstructed; when the actuator fault is identified, the control allocation matrix is reconstructed. Simulation results show that the proposed method can effectively diagnose sensor fault and actuator faults, and significantly improve attitude tracking accuracy and control adjustment time.
Nontuberculous mycobacteria (NTM) is a large group of mycobacteria other than the Mycobacterium tuberculosis complex and Mycobacterium leprae. Epidemiological investigations have found that the incidence of NTM infections is increasing in China, and it is naturally resistant to many antibiotics. Therefore, studies of NTM species in clinical isolates are useful for understanding the epidemiology of NTM infections. The present study aimed to investigate the incidence of NTM infections and types of NTM species. Of the 420 samples collected, 285 were positive for M. tuberculosis, 62 samples were negative, and the remaining 73 samples contained NTM, including 35 (8.3%) only NTM and 38 (9%) mixed (M. tuberculosis and NTM). The most prevalent NTM species were Mycobacterium intracellulare (30.1%), followed by Mycobacterium abscessus (15%) and M. triviale (12%). M. gordonae infection was detected in 9.5% of total NTM-positive cases. Moreover, this study reports the presence of Mycobacterium nonchromogenicum infection and a high prevalence of M. triviale for the first time in Henan. M. intracellulare is the most prevalent, accompanied by some emerging NTM species, including M. nonchromogenicum and a high prevalence of M. triviale in Henan Province. Monitoring NTM transmission and epidemiology could enhance mycobacteriosis management in future.
Microplastics (MPs) are carbon-rich polymers that are ubiquitous in the environment. With the increase of plastic production, microplastic pollution may be exacerbated and result in significant changes in microbial communities and biogeochemical processes such as carbon cycling, eventually impacting greenhouse gas emission and carbon storage in terrestrial ecosystems. However, current research on the effect of MPs on soil carbon cycling is still limited, and there is a lack of systematic review of the scattered information obtained from previous studies. Accordingly, this review provides a systematic overview of the current knowledge on the effects of MPs on soil carbon cycling and gives future research suggestions. Emerging evidence indicates that MPs could affect soil carbon stability and CO2 and CH4 emission by modifying soil physicochemical and microbiological properties; though biodegradable MPs often exhibit a greater effect than nonbiodegradable ones, the specific effects are highly dependent on plastic type, size and concentration. The specific mechanisms of MPs’ impact on soil carbon cycles remain elusive, which are discussed mainly from the perspective of microbial changes, including microbial biomass, microbial community composition, and key enzymes and functional genes associated with carbon metabolism. Further research is needed to elucidate whether MPs have a positive priming effect on soil carbon decomposition and the biotic and abiotic mechanisms involved. This review paper helps researchers gain a clearer picture of how and through which way MPs impact carbon cycling in soil ecosystems.
Population-wide restrictions during the COVID-19 pandemic may create barriers to mental health diagnosis. This study aims to examine changes in the number of incident cases and the incidence rates of mental health diagnoses during the COVID-19 pandemic.
Methods
By using electronic health records from France, Germany, Italy, South Korea and the UK and claims data from the US, this study conducted interrupted time-series analyses to compare the monthly incident cases and the incidence of depressive disorders, anxiety disorders, alcohol misuse or dependence, substance misuse or dependence, bipolar disorders, personality disorders and psychoses diagnoses before (January 2017 to February 2020) and after (April 2020 to the latest available date of each database [up to November 2021]) the introduction of COVID-related restrictions.
Results
A total of 629,712,954 individuals were enrolled across nine databases. Following the introduction of restrictions, an immediate decline was observed in the number of incident cases of all mental health diagnoses in the US (rate ratios (RRs) ranged from 0.005 to 0.677) and in the incidence of all conditions in France, Germany, Italy and the US (RRs ranged from 0.002 to 0.422). In the UK, significant reductions were only observed in common mental illnesses. The number of incident cases and the incidence began to return to or exceed pre-pandemic levels in most countries from mid-2020 through 2021.
Conclusions
Healthcare providers should be prepared to deliver service adaptations to mitigate burdens directly or indirectly caused by delays in the diagnosis and treatment of mental health conditions.
This study aims to gain insight into each attribute as presented in the value of implantable medical devices, quantify attributes’ strength and their relative importance, and identify the determinants of stakeholders’ preferences.
Methods
A mixed-methods design was used to identify attributes and levels reflecting stakeholders’ preference toward the value of implantable medical devices. This design combined literature reviewing, expert’s consultation, one-on-one interactions with stakeholders, and a pilot testing. Based on the design, six attributes and their levels were settled. Among 144 hypothetical profiles, 30 optimal choice sets were developed, and healthcare professionals (decision-makers, health technology assessment experts, hospital administrators, medical doctors) and patients as stakeholders in China were surveyed. A total of 134 respondents participated in the survey. Results were analyzed by mixed logit model and conditional logit model.
Results
The results of the mixed logit model showed that all the six attributes had a significant impact on respondents’ choices on implantable medical devices. Respondents were willing to pay the highest for medical devices that provided improvements in clinical safety, followed by increased clinical effectiveness, technology for treating severe diseases, improved implement capacity, and innovative technology (without substitutes).
Conclusions
The findings of DCE will improve the current evaluation on the value of implantable medical devices in China and provide decision-makers with the relative importance of the criteria in pricing and reimbursement decision-making of implantable medical devices.
The comparisons among 126 14C dates of Carex samples including separated leaf and root parts with acid (A)-treatment and acid-base-acid (ABA)-treatment, and 48 published 14C dates of bulk peat plants on a 92-cm core from Jinchuan Mire in NE China, indicate old carbon influence (OCI) on the 14C dates. The OCI varies with plant species, pretreatment and peat depth. In vascular peat plants such as Carex, humin fractions (remains after ABA treatment) and humic acids are representative of the original plant precursor, while fulvic acids are regarded as the secondary mobile product which should be removed for 14C dating. ABA- treatment removes both fulvic acids and humic acids, whereas A-treatment gets rid of only fulvic acids. Carex roots uptake more dissolved CO2 in peat water. Carex leaves may use more CO2 (involving degassing CO2) above the peat surface. By removing humic acids throughout ABA treatment, the OCI may vary differently over depth (time). ABA treatment cannot eliminate the fixed OCI in humin fractions of vascular peat plants, instead, this treatment may enhance OCI by removing humic acid which may represent the true age of the plants. In addition, Bacon model results on this core could not show rapid changes in accumulation rate.
National health insurance (NHI) Taiwan has provided additional markups on dental service fees for people with specific disabilities, and the expenditure has increased significantly from TWD473 million (USD15 million) in 2016 to TWD722 million (USD24 million) in 2022. The purpose of this study was to determine oral health risk and to develop a risk assessment model for capitation outpatient dental payments in children with Autism.
Methods
Based on the literature and expert opinion, we developed a level of oral health risk model from the claim records of 2019. The model uses oral outpatient claim data to analyze: (i) the degree of caries disease; (ii) the level of dental fear or cooperation; and (iii) the level of tooth structure. Each factor was given a score from zero to four and a total score was calculated. Low-, medium-, and high-risk groups were formed based on the total points. The oral health risk capitation models are estimated by ordinary least squares using an individual’s annual outpatient dental expenditure in 2019 as the dependent variable. For subgroups based on age group and level of disability, expenditures predicted by the models are compared with actual outpatient dental expenditures. Predictive R-squared and predictive ratios were used to evaluate the model’s predictability.
Results
The demographic variables, level of oral health risk, preventive dental care, and the type of dental health care predicted 30 percent of subsequent outpatient dental expenditure in children with autism. For subgroups (age group and disability level) of high-risk patients, the model substantially overpredicted the expenditure, whereas underprediction occurred in the low-risk group.
Conclusions
The risk-adjusted model based on principal oral health was more accurate in predicting an individual’s future expenditure than the relevant study in Taiwan. The finding provides insight into the important risk factor in the outpatient dental expenditure of children with autism and the fund planning of dental services for people with specific disabilities.