We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Traditional path planning algorithms often encounter challenges in complex dynamic environments, including local optima, excessive path lengths, and inadequate dynamic obstacle avoidance. Thus, the development of innovative path planning algorithms is essential. This article addresses the challenges of mobile robot path planning in complex environments, where traditional methods often converge to local optima, leading to suboptimal path lengths, and struggle with dynamic obstacle avoidance. To overcome these limitations, we propose an integrated algorithm, the enhanced sparrow search algorithm combined with the dynamic window approach (ESSA-DWA). The algorithm first utilizes ESSA for global path planning, followed by local path planning facilitated by the DWA. Specifically, ESSA incorporates Tent chaotic initialization to enhance population diversity, effectively mitigating the risk of premature convergence to local optima. Moreover, dynamic adjustments to the inertia weight during the search process enable an adaptive balance between exploration and exploitation. The integration of a local search strategy further refines individual updates, thereby improving local search performance. To enhance path smoothness, the Floyd algorithm is employed for path optimization, ensuring a more continuous trajectory. Finally, the combination of ESSA and DWA uses key nodes from the global path generated by ESSA as reference points for the local planning process of DWA. This approach ensures that the local path closely follows the global path while also enabling real-time dynamic obstacle detection and avoidance. The effectiveness of the algorithm has been validated through both simulations and practical experiments, offering an efficient and viable solution to the path planning problem.
Triceps skinfold thickness (TSF) is a surrogate marker of subcutaneous fat. Evidence is limited about the association of sex-specific TSF with the risk of all-cause mortality among maintenance hemodialysis (MHD) patients. We aimed to investigate the longitudinal relationship of TSF with all-cause mortality among MHD patients. A multicenter prospective cohort study was performed in 1034 patients undergoing MHD. The primary outcome was all-cause mortality. Multivariable Cox proportional hazards models were used to evaluate the association of TSF with the risk of mortality. The mean (standard deviation) age of the study population was 54.1 (15.1) years. 599 (57.9%) of the participants were male. The median (interquartile range) of TSF was 9.7 (6.3–13.3 mm) in males and 12.7 (10.0–18.0 mm) in females. Over a median follow up of 4.4 years (interquartile range, 2.4-7.9 years), there were 548 (53.0%) deaths. When TSF was assessed as sex-specific quartiles, compared with those in quartile 1, the adjusted HRs (95%CIs) of all-cause mortality in quartile 2, quartile 3 and quartile 4 were 0.93 (0.73, 1.19), 0.75 (0.58, 0.97) and 0.69 (0.52, 0.92), respectively (P for trend =0.005). Moreover, when analyzed by sex, increased TSF (≥9.7 mm for males and ≥18mm for females) was significantly associated with a reduced risk of all-cause mortality (quartile 3-4 vs. quartile 1-2; HR, 0.70; 95%CI: 0.55, 0.90 in males; quartile 4 vs. Quartile 1-3; HR, 0.69; 95%CI: 0.48, 1.00 in females). In conclusion, high TSF was significantly associated with lower risk of all-cause mortality in MHD patients.
This study investigates the effects of fat emulsion-based early parenteral nutrition in patients following hemihepatectomy, addressing a critical gap in clinical knowledge regarding parenteral nutrition after hemihepatectomy. We retrospectively analysed clinical data from 274 patients who received non-fat emulsion-based parenteral nutrition (non-fatty nutrition group) and 297 patients who received fat emulsion-based parenteral nutrition (fatty nutrition group) after hemihepatectomy. Fat emulsion-based early parenteral nutrition significantly reduced levels of post-operative aspartate aminotransferase, total bilirubin and direct bilirubin, while minor decreases in red blood cell and platelet counts were observed in the fatty nutrition group. Importantly, fat emulsion-based early parenteral nutrition shortened lengths of post-operative hospital stay and fasting duration, but did not affect the incidence of short-term post-operative complications. Subgroup analyses revealed that the supplement of n-3 fish oil emulsions was significantly associated with a reduced inflammatory response and risk of post-operative infections. These findings indicate that fat emulsion-based early parenteral nutrition enhances short-term post-operative recovery in patients undergoing hemihepatectomy.
Childhood maltreatment, a significant distal risk factor for individual development, is potentially linked to maladaptive cognitive emotion regulation strategies (MCERS) and increased internalizing problems (i.e., depression and anxiety). Prior research has widely identified that MCERS mediate the link between childhood maltreatment and internalizing problems. However, this result overlooks the potential bidirectional relationship between MCERS and internalizing problems. In this study, we aim to explore whether childhood maltreatment longitudinally linked to internalizing problems through the mediating role of MCERS, or, conversely, was related to subsequent MCERS through internalizing problems. Gender differences in the associations between these variables were also examined. Participants were 892 adolescents from a longitudinal design with two waves (487 females, 405 males; Mage = 15.36, SDage = 1.43). Our results indicated that childhood maltreatment was longitudinally related to MCERS and internalizing problems. T1 MCERS mediated the relationship between T1 child maltreatment and T2 internalizing problems, while T1 internalizing problems also played a mediating role between T1 child maltreatment and T2 MCERS. These findings were also equivalent across genders. Taken together, childhood maltreatment was longitudinally associated with internalizing problems through MCERS, and also related to subsequent MCERS through internalizing problems.
The flexible delivery of single-frequency lasers is far more challenging than that of conventional lasers due to the onset of stimulated Brillouin scattering (SBS). Here we present the successful delivery of 100 W single-frequency laser power through 100 m of anti-resonant hollow-core fiber (AR-HCF) in an all-fiber configuration, with the absence of SBS. By employing a custom-designed AR-HCF with a mode-field diameter matching that of a large-mode-area panda fiber, the system achieves high coupling efficiency without the need for free-space components or fiber post-processing. The AR-HCF attains a transmission efficiency of 92%, delivering an output power of 100.3 W with a beam quality factor (M2) of 1.22. The absence of SBS is confirmed through monitoring backward light, which shows no increase in intensity. This all-fiber architecture ensures high stability, compactness and efficiency, potentially expanding the application scope of single-frequency lasers in high-precision metrology, optical communication, light detection and ranging systems, gravitational wave detection and other advanced applications.
This work investigates the spatio-temporal evolution of coherent structures in the wake of a generic high-speed train, based on a three-dimensional database from large eddy simulation. Spectral proper orthogonal decomposition (SPOD) is used to extract energy spectra and energy ranked empirical modes for both symmetric and antisymmetric components of the fluctuating flow field. The spectrum of the symmetric component shows overall higher energy and more pronounced low-rank behaviour compared with the antisymmetric one. The most dominant symmetric mode features periodic vortex shedding in the near wake, and wave-like structures with constant streamwise wavenumber in the far wake. The mode bispectrum further reveals the dominant role of self-interaction of the symmetric component, leading to first harmonic and subharmonic triads of the fundamental frequency, with remarkable deformation of the mean field. Then, the stability of the three-dimensional wake flow is analysed based on two-dimensional local linear stability analysis combined with a non-parallelism approximation approach. Temporal stability analysis is first performed for both the near-wake and the far-wake regions, showing a more unstable condition in the near-wake region. The absolute frequency of the near-wake eigenmode is determined based on spatio-temporal analysis, then tracked along the streamwise direction to find out the global mode growth rate and frequency, which indicate a marginally stable global mode oscillating at a frequency very close to the most dominant SPOD mode. The global mode wavemaker is then located, and the structural sensitivity is calculated based on the direct and adjoint modes derived from a local spatial analysis, with the maximum value localized within the recirculation region close to the train tail. Finally, the global mode shape is computed by tracking the most spatially unstable eigenmode in the far wake, and the alignment with the SPOD mode is computed as a function of streamwise location. By combining data-driven and theoretical approaches, the mechanisms of coherent structures in complex wake flows are well identified and isolated.
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
Oncomelania hupensis (O. hupensis), the sole intermediate host of Schistosoma japonicum, greatly influence the prevalence and distribution of schistosomiasis japonica. The distribution area of O. hupensis has remained extensive for numerous years. This study aimed to establish a valid agent-based model of snail density and further explore the environmental conditions suitable for snail breeding. A marshland with O. hupensis was selected as a study site in Dongting Lake Region, and snail surveys were monthly conducted from 2007 to 2016. Combined with the data from historical literature, an agent-based model of snail density was constructed in NetLogo 6.2.0 and validated with the collected survey data. BehaviorSpace was used to identify the optimal ranges of soil temperature, pH, soil water content, and vegetation coverage for snail growth, development and reproduction. An agent-based model of snail density was constructed and showed a strong agreement with the monthly average snail density from the field surveys. As soil temperature increased, the snail density initially rose before declining, reaching its peak at around 21°C. There were similar variation patterns for other environmental factors. The findings from the model suggested that the optimum ranges of soil temperature, pH, soil water content and vegetation coverage were 19°C to 23 °C, 6.4 to 7.6, 42% to 75%, and 70% to 93%, respectively. A valid agent-based model of snail density was constructed, providing more objective information about the optimum ranges of environmental factors for snail growth, development and reproduction.
The AIMTB rapid test assay is an emerging test, which adopted a fluorescence immunochromatographic assay to measure interferon-γ (IFN-γ) production following stimulation of effector memory T cells in whole blood by mycobacterial proteins. The aim of this article was to explore the ability of AIMTB rapid test assay in detecting Mycobacterium tuberculosis (MTB) infection compared with the widely applied QuantiFERON-TB Gold Plus (QFT-Plus) test among rural doctors in China. In total, 511 participants were included in the survey. The concordance between the QFT-Plus test and the AIMTB rapid test assay was 94.47% with a Cohen’s kappa coefficient (κ) of 0.84 (95% CI, 0.79–0.90). Improved concordance between the two tests was observed in males and in participants with 26 or more years of service as rural doctors. The quantitative values of the QFT-Plus test was higher in individuals with a result of QFT-Plus-/AIMTB+ as compared to those with a result of QFT-Plus-/AIMTB- (p < 0.001). Overall, our study found that there was an excellent consistency between the AIMTB rapid test assay and the QFT-Plus test in a Chinese population. As the AIMTB rapid test assay is fast and easy to operate, it has the potential to improve latent tuberculosis infection testing and treatment at the community level in resource-limited settings.
In recent years, unmanned aerial vehicles (UAVs) have been applied in underground mine inspection and other similar works depending on their versatility and mobility. However, accurate localization of UAVs in perceptually degraded mines is full of challenges due to the harsh light conditions and similar roadway structures. Due to the unique characteristics of the underground mines, this paper proposes a semantic knowledge database-based localization method for UAVs. By minimizing the spatial point-to-edge distance and point-to-plane distance, the relative pose constraint factor between keyframes is designed for UAV continuous pose estimation. To reduce the accumulated localization errors during the long-distance flight in a perceptual-degraded mine, a semantic knowledge database is established by segmenting the intersection point cloud from the prior map of the mine. The topological feature of the current keyframe is detected in real time during the UAV flight. The intersection position constraint factor is constructed by comparing the similarity between the topological feature of the current keyframe and the intersections in the semantic knowledge database. Combining the relative pose constraint factor of LiDAR keyframes and the intersection position constraint factor, the optimization model of the UAV pose factor graph is established to estimate UAV flight pose and eliminate the cumulative error. Two UAV localization experiments conducted on the simulated large-scale Edgar Mine and a mine-like indoor corridor indicate that the proposed UAV localization method can realize accurate localization during long-distance flight in degraded mines.
Isoproturon phytotoxicity to wheat (Triticum aestivum L.) is a worry for many farmers in chemical control of weeds in wheat fields, especially in subzero weather conditions. Iron chlorin e6 (ICe6), a new plant growth regulator, has been reported to enhance crop stress resistance to alleviate damage caused by stress; however, it is not clear whether ICe6 has an alleviative effect on isoproturon phytotoxicity to wheat. We determined the alleviative effect of ICe6 on isoproturon phytotoxicity to wheat, and 0.018 g ai ha−1 was the optimal dose. Meanwhile, we also studied the photosynthetic pigment content, photosynthetic parameters, oxidative stress indicators, and antioxidant enzyme activity of wheat treated with the three different treatments. We found that the photosynthetic pigment content, antioxidant enzyme activity, and photosynthesis of wheat damaged by isoproturon were significantly lower than those of the control, and the hydrogen peroxide (H2O2) and malondialdehyde (MDA) content increased. These results indicate that isoproturon stress significantly weakened the photosynthetic and antioxidant capacity of wheat. The photosynthetic pigment content, photosynthetic parameters (excluding intercellular CO2 concentration), and antioxidant enzyme activity of isoproturon+ICe6– treated wheat were significantly higher than those of isoproturon-treated wheat. The H2O2 and MDA content was significantly lower than that of isoproturon-treated wheat. These results indicate that ICe6 treatment maintained the photosynthetic pigment content of wheat and relatively improved photosynthetic capacity, allowing photosynthesis to proceed normally. ICe6 treatment also limits the decrease in antioxidant enzyme activity, effectively clearing excess reactive oxygen species and ultimately alleviating membrane lipid peroxidation damage. In summary, ICe6 not only enhances stress resistance and increases yield in crops such as soybean [Glycine max (L.) Merr.] and canola (Brassica napus L.), but also has an alleviating effect on the isoproturon phytotoxicity to wheat, which is manifested by the improvement of photosynthetic and antioxidant abilities, ultimately leading to an increase in wheat shoot height and shoot fresh weight.
By integrating the theory of purposeful work behavior with the person-environment (P-E) fit literature, we employ a bilateral approach to examine how employee-supervisor congruence in purposeful work striving (i.e., achievement striving) influences employee voice behavior via an internal motivation mechanism (i.e., organizational identification). Using polynomial regressions with response surface modeling, we analyze data from 827 employees and their 197 supervisors in two studies. The results show that achievement-driven employees are more likely to speak up when employee-supervisor achievement striving is congruent, regardless of whether it is high or low. Furthermore, employee-supervisor congruence in achievement striving enhances employees’ felt oneness with the organization and organizational identification, which in turn fuels their voice behavior. We conclude with theoretical and practical implications.
Moral emotions such as shame, guilt and pride are crucial to young children’s social-emotional development. Due to the restrictions caused by hearing loss in accessing the social world, deaf and hard of hearing (DHH) children may encounter extra difficulties in their development of moral emotions. However, little research so far has investigated the development trajectory of moral emotions during preschool years in DHH children. The present study used a longitudinal design to explore the development trajectories of shame, guilt, and pride, in a sample of 259 Chinese DHH and typically hearing (TH) preschoolers aged 2 to 6 years old. The results indicated that according to parent reports, DHH children manifested lower levels of guilt and pride compared to their TH peers, yet the manifested levels of shame, guilt, and pride increased throughout the preschool time at a similar pace in all children. Moreover, whilst guilt and pride contributed to increasing levels of psychosocial functioning over the preschool years, shame contributed to lower social competence and more externalizing behaviors in DHH and TH preschoolers. The outcomes imply that early interventions and adjustment to hearing loss could be useful to safeguard the social development of children with severe hearing loss, and cultural variances shall be taken into consideration when studying moral emotions in a Chinese cultural background.
Parallel manipulators with flexible morphing platform (FMP) provide potential solution in various application fields, such as shape-morphing underwater robot, deformable wings, and human–machine interfaces. However, there is still lack of effective approach for the design and analysis of such novel type of parallel manipulator. In this article, a 9-UPS redundant actuation parallel manipulator with flexible morphing moving platform is designed as a representative of this kind of manipulator. Correspondingly, a deformation estimation and shape control approach for the FMP is presented. The proposed deformation estimation approach is designed based on the bending energy, which can achieve high calculation efficiency and avoid complex mechanical definition and calculation. And the proposed shape control approach is realized by utilizing a nonrigid ICP match algorithm, which can continuously deform the morphing platform to an arbitrary target surface. A prototype of the 9-UPS parallel manipulator is fabricated and analyzed as verification. The experiment results show that the proposed approach offers a promising avenue for the deformation estimation and shape control of the morphing platform.
Salvia miltiorrhiza is an outcrossing and perennial herb native to China. Although well-known for its medicinal value, there is a lack of knowledge regarding its natural population genetics. Here, we used 12 microsatellite markers to investigated population genetic diversity and structure of 215 samples from populations naturally distributed in central eastern China. A moderate level of genetic diversity was detected probably due to the over-mining of its roots. The allelic richness (AR) ranged from 3.034 to 4.889 with an average of 3.891. Moreover, pairwise estimates of FST among the populations of S. miltiorrhiza varied from 0.036 to 0.312 and two clusters were obtained by STRUCTURE and discriminant analysis of principal components. It is likely that the genetic differentiation of these two clusters was formed during glacial periods. Our result provides insights into the conservation of this valuable medicinal plant.
Liquid crystal microwave phased arrays (LC-MPAs) are regarded as an ideal approach to realize compact antennas owing to their advantages in cost, size, weight, and power consumption. However, the shortcoming in low radiation deflection efficiency has been one of LC-MPAs’ main application limitations. To optimize the steering performance of LC-MPAs, it is essential to model the channel imperfections and compensate for the phase errors. In this paper, a phase error estimation model is built by training a neural network to establish a nonlinear relationship between the near-field phase error and the far-field pattern, hence realizing fast calibration for LC-MPAs within several measured patterns. Simulations and experiments on a 64-channel, two-dimensional planar antenna were conducted to validate this method. The results show that this method offers precise phase error estimations of 3.58° on average, realizes a fast calibration process with several field-measured radiation patterns, and improves the performances of the LC-MPA by approximately 4%–10% in deflection efficiency at different steering angles.
In 2018, an Ionplus 200 kV MIni-CArbon DAting System (MICADAS) accelerator mass spectrometer (AMS) was installed at the Laboratory of AMS Dating and the Environment, Nanjing University (NJU-AMS Laboratory), China. The NJU-AMS Laboratory is largely devoted to research on radiocarbon dating and 14C analysis in fields of earth, environmental and archaeological sciences. The laboratory has successfully employed various pretreatment methods, including routine pretreatment of tree rings, buried wood and subfossil wood, seeds, charcoal, pollen concentrates, organic matter, and shells. In this study, operational status of the NJU-AMS is presented, and results of radiocarbon measurements made on different sample types are reported. Measurements on international standards, references of known age, and blank samples demonstrate that the NJU-AMS runs stably and has good reproducibility on measurement of single samples. The facility is capable of measuring 14C in samples with the precision and accuracy that meet the requirements for investigating annual 14C changes, history-prehistory age dating, and Late Quaternary stratigraphic chronology research.
Pulmonary atresia with intact ventricular septum and critical pulmonary stenosis usually have to undergo treatment in the neonatal period. Compared to traditional surgical intervention, catheter-based cardiac interventions may achieve similar or superior outcomes for neonates with pulmonary atresia with intact ventricular septum and critical pulmonary stenosis. However, there is limited literature on anaesthesia techniques, challenges, and risks associated with cardiac catheterisation in this population.
Methods:
This article retrospectively analysed the clinical data of pulmonary atresia with intact ventricular septum and critical pulmonary stenosis neonates who were treated with interventional cardiac catheterisation in our hospital from January 2015 to October 2022. Clinical outcomes considered were haemodynamic or pulse oxygen saturation instability, vasoactive requirements, prolonged intubation (>24 h postoperatively), and cardiovascular adverse events.
Results:
A total of 63 patients met the inclusion criteria. All patients survived the intervention. Among the patients with critical pulmonary stenosis, 40 successfully received percutaneous balloon pulmonary valvuloplasty, while three patients received ductal stenting due to moderate right ventricular dysplasia at the same time. For patients with pulmonary atresia with intact ventricular septum, 17 of the 23 patients successfully underwent percutaneous pulmonary valve perforation and percutaneous balloon pulmonary valvuloplasty. Of these, five patients underwent ductal stenting due to unstable pulmonary blood flow. Three patients only underwent ductal stenting. In addition, three patients received hybrid therapy.
Conclusions:
There are various clinical techniques and risk challenges in the interventional cardiac catheterisation of neonatal pulmonary atresia with intact ventricular septum and critical pulmonary stenosis. However, by mastering the physiological and pathophysiological characteristics of the disease, adequately preparing for the perioperative period, and predicting the procedure process and potential complications, anaesthesia and surgical risks can be effectively managed.
China is still among the 30 high-burden tuberculosis (TB) countries in the world. Few studies have described the spatial epidemiological characteristics of pulmonary TB (PTB) in Jiangsu Province. The registered incidence data of PTB patients in 95 counties of Jiangsu Province from 2011 to 2021 were collected from the Tuberculosis Management Information System. Three-dimensional spatial trends, spatial autocorrelation, and spatial–temporal scan analysis were conducted to explore the spatial clustering pattern of PTB. From 2011 to 2021, a total of 347,495 newly diagnosed PTB cases were registered. The registered incidence rate of PTB decreased from 49.78/100,000 in 2011 to 26.49/100,000 in 2021, exhibiting a steady downward trend (χ2 = 414.22, P < 0.001). The average annual registered incidence rate of PTB was higher in the central and northern regions. Moran’s I indices of the registered incidence of PTB were all >0 (P< 0.05) except in 2016, indicating a positive spatial correlation overall. Local autocorrelation analysis showed that ‘high–high’ clusters were mainly distributed in northern Jiangsu, and ‘low–low’ clusters were mainly concentrated in southern Jiangsu. The results of this study assist in identifying settings and locations of high TB risk and inform policy-making for PTB control and prevention.