We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This Element examines how international heritage discourses are internalized and reshaped in China, using the Yellow Emperor cults as a lens to explore broader themes of intangible heritage, religious resurgence, and identity construction. The central argument is that cultural heritage serves as a powerful tool for shaping new religious expressions and enabling Chinese localities to assert their uniqueness while redefining historical narratives. Through case studies of several localities across China, this research illustrates how these regions engage in heritage competition by branding themselves with Yellow Emperor culture to shape their identities. This study argues that the cult of the Yellow Emperor-a legendary figure-is empowered by nationalism, a local search for tradition and religious revivals, and is further amplified by international discourses that reinforce national identity through heritage-making. Together, these forces drive the resurgence of ancestral cults and contribute to cultural identity formation in contemporary China.
Although it is well established that gestational diabetes mellitus (GDM) is associated with fetal overgrowth in singleton pregnancies, little is known about its role in twins. We aimed to explore the relationship between GDM and the longitudinal fetal growth in twin pregnancies. This was a retrospective matched cohort study of GDM and non-GDM twin pregnancies delivered ≥36 weeks without other complications. All the women performed ≥3 ultrasounds after 22 weeks. Linear mixed models (LMMs) were used to explore the relationships between longitudinal fetal growth trajectories and GDM. Group-based trajectory modeling (GBTM) and generalized estimating equation (GEE) were applied to identify the latent growth patterns and investigate their relationships with GDM. In total, 215 GDM and 645 non-GDM twins were included, the majority of the patients did not require medication therapy (n = 202, GDMA1). LMM revealed that, compared with non-GDM, GDM was associated with an average increase in fetal weight of 4.36 g (95% CI [1.25, 7.48]) per week. GBTM and GEE further revealed that GDM increased the odds of fetal weight trajectory to nearly 40% of the total fetal weight trajectory, classified into the high-speed group (aOR = 1.39, 95% CI [1.03, 1.88]), associating with a 49.44 g (95% CI [11.41, 87.48]) increase in birth weight. Subgroup analysis revealed that all these differences were only significant among the GDMA1 pregnancies (p < .05). GDM (GDMA1) is significantly associated with an increase in fetal weight during gestation in twin pregnancies. However, this acceleration is mild, and its significance requires further exploration.
This research explores a phenomenon that we see nearly every day and has implications for how we view people in other nations: Different media outlets may report the same international events either in terms of the nation (e.g., “Russia invades Ukraine”) or in terms of the leader (e.g., “Putin invades Ukraine”). Five studies, conducted during the 2022 Russia-Ukraine Conflict and involving both field and experimental data, find that readers of nation-framed news about the conflict had worse impressions of the people in the associated nation (Russians) than readers of the corresponding leader-framed version. We explain the psychology behind this framing effect and identify its moderators. Our research underscores the importance of responsible media practices in shaping global perceptions.
An advanced deformable Kirkpatrick–Baez (K-B) mirror system was developed, equipped with high-speed piezoelectric actuators, and designed to induce beam decoherence and significantly enhance the quality of X-ray imaging by minimizing undesirable speckles in synchrotron radiation or free-electron laser facilities. Each individual mirror is engineered with 36 independent piezoelectric actuators that operate in a randomized manner, orchestrating the mirror surface to oscillate at a high frequency up to 100 kHz. Through in situ imaging single-slit diffraction measurement, it has been demonstrated that this high-frequency-vibration mirror system is pivotal in disrupting the coherent nature, thereby diminishing speckle formation. The impact of the K-B mirror system is profound, with the capability to reduce the image contrast to as low as 0.04, signifying a substantial reduction in speckle visibility. Moreover, the coherence of the X-ray beam is significantly lowered from an initial value exceeding 80% to 13%.
Pro-environmental behavior, including waste sorting and recycling, involves a combination of future-oriented (futureness) and other-oriented (otherness) attributes. Inspired by the perspective of intergenerational choice, this work explores whether eliciting concerns for future others could increase public support for recycling policy and recycling behavior. Study 1 consisted of an online random controlled trial and a laboratory experiment. In Study 1A (N = 400), future other-concern was primed using a static text manipulation, whereas in Study 1B (N = 192), a dynamic virtual manipulation was employed. The results showed that people in the conditions that elicited future other-concern reported greater household recycling intentions and more actual recycling behavior than those in the control conditions. Study 2A (N = 467) and Study 2B (N = 600) generalized this effect on the acceptance of the ‘Certain Time Certain Place’ waste sorting policy in China. Consistent with the intergenerational choice model, envisioning the future of subsequent generations is more impactful in gaining policy approval than merely envisioning a future time. These findings provide a new method for promoting public policy approval and recycling behavior, suggesting that people could become environmentally friendly when they are guided to consider future others.
This study examined the sour grapes/sweet lemons rationalization through 2 conditions: ‘attainable’ (sweet lemons) and ‘unattainable’ (sour grapes), reflecting China’s 2019-nCoV vaccination strategy. The aim was to find ways to change people’s beliefs and preferences regarding vaccines by easing their safety concerns and encouraging more willingness to get vaccinated. An online survey was conducted from January 22 to 27, 2021, with 3,123 residents across 30 provinces and municipalities in the Chinese mainland. The direction of belief and preference changed in line with the sour grapes/sweet lemons rationalization. Using hypothetical and real contrasts, we compared those for whom the vaccine was relatively unattainable (‘sour grapes’ condition) with those who could get the vaccine easily (‘sweet lemons’). Whether the vaccine was attainable was determined in the early stage of the vaccine roll-out by membership in a select group of workers that was supposed to be vaccinated to the greatest extent possible, or, by being in the second stage when the vaccine was available to all. The attainable conditions demonstrated higher evaluation in vaccine safety, higher willingness to be vaccinated, and lower willingness to wait and see. Hence, we propose that the manipulation of vaccine attainability, which formed the basis of the application of sour grapes/sweet lemons rationalization, can be utilized as a means to manipulate the choice architecture to nudge individuals to ease vaccine safety concerns, reducing wait-and-see tendencies, and enhancing vaccination willingness. This approach can expedite universal vaccination and its associated benefits in future scenarios resembling the 2019-nCoV vaccine rollout.
Folate metabolism is involved in the development and progression of various cancers. We investigated the association of single nucleotide polymorphisms (SNP) in folate-metabolising genes and their interactions with serum folate concentrations with overall survival (OS) and liver cancer-specific survival (LCSS) of newly diagnosed hepatocellular carcinoma (HCC) patients. We detected the genotypes of six SNP in three genes related to folate metabolism: methylenetetrahydrofolate reductase (MTHFR), 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR) and 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR). Cox proportional hazard models were used to calculate multivariable-adjusted hazard ratios (HR) and 95 % CI. This analysis included 970 HCC patients with genotypes of six SNP, and 864 of them had serum folate measurements. During a median follow-up of 722 d, 393 deaths occurred, with 360 attributed to HCC. In the fully-adjusted models, the MTRR rs1801394 polymorphism was significantly associated with OS in additive (per G allele: HR = 0·84, 95 % CI: 0·71, 0·99), co-dominant (AG v. AA: HR = 0·77; 95 % CI: 0·62, 0·96) and dominant (AG + GG v. AA: HR = 0·78; 95 % CI: 0·63, 0·96) models. Carrying increasing numbers of protective alleles was linked to better LCSS (HR10–12 v. 2–6 = 0·70; 95 % CI: 0·49, 1·00) and OS (HR10–12 v. 2–6 = 0·67; 95 % CI: 0·47, 0·95). Furthermore, we observed significant interactions on both multiplicative and additive scales between serum folate levels and MTRR rs1801394 polymorphism. Carrying the variant G allele of the MTRR rs1801394 is associated with better HCC prognosis and may enhance the favourable association between higher serum folate levels and improved survival among HCC patients.
Purple nutsedge (Cyperus rotundus L.) is one of the world’s resilient upland weeds, primarily spreading through its tubers. Its emergence in rice (Oryza sativa L.) fields has been increasing, likely due to changing paddy-farming practices. This study aimed to investigate how C. rotundus, an upland weed, can withstand soil flooding and become a problematic weed in rice fields. The first comparative analysis focused on the survival and recovery characteristics of growing and mature tubers of C. rotundus exposed to soil-flooding conditions. Notably, mature tubers exhibited significant survival and recovery abilities in these environments. Based on this observation, further investigation was carried out to explore the morphological structure, nonstructural carbohydrates, and respiratory mechanisms of mature tubers in response to prolonged soil flooding. Over time, the mature tubers did not form aerenchyma but instead gradually accumulated lignified sclerenchymal fibers, with lignin content also increasing. After 90 d, the lignified sclerenchymal fibers and lignin contents were 4.0 and 1.1 times higher than those in the no soil-flooding treatment. Concurrently, soluble sugar content decreased while starch content increased, providing energy storage, and alcohol dehydrogenase activity rose to support anaerobic respiration via alcohol fermentation. These results indicated that mature tubers survived in soil-flooding conditions by adopting a low-oxygen quiescence strategy, which involves morphological adaptations through the development of lignified sclerenchymal fibers, increased starch reserves for energy storage, and enhanced anaerobic respiration. This mechanism likely underpins the flooding tolerance of mature C. rotundus tubers, allowing them to endure unfavorable conditions and subsequently germinate and grow once flooding subsides. This study provides a preliminary explanation of the mechanism by which mature tubers of C. rotundus from the upland areas confer flooding tolerance, shedding light on the reasons behind this weed’s increasing presence in rice fields.
Generalized Poisson (GP) distribution was introduced in Consul & Jain ((1973). Technometrics, 15(4), 791–799.). Since then it has found various applications in actuarial science and other areas. In this paper, we focus on the distributional properties of GP and its related distributions. In particular, we study the distributional properties of distributions in the $\mathcal{H}$ family, which includes GP and generalized negative binomial distributions as special cases. We demonstrate that the moment and size-biased transformations of distributions within the $\mathcal{H}$ family remain in the same family, which significantly extends the results presented in Ambagaspitiya & Balakrishnan ((1994). ASTINBulletin: the Journal of the IAA, 24(2), 255–263.) and Ambagaspitiya ((1995). Insurance Mathematics and Economics, 2(16), 107–127.). Such findings enable us to provide recursive formulas for evaluating risk measures, such as Value-at-Risk and conditional tail expectation of the compound GP distributions. In addition, we show that the risk measures can be calculated by making use of transform methods, such as fast Fourier transform. In fact, the transformation method showed a remarkable time advantage over the recursive method. We numerically compare the risk measures of the compound sums when the primary distributions are Poisson and GP. The results illustrate the model risk for the loss frequency distribution.
We formulate and prove the archimedean period relations for Rankin–Selberg convolutions for ${\mathrm {GL}}(n)\times {\mathrm {GL}}(n-1)$. As a consequence, we prove the period relations for critical values of the Rankin–Selberg L-functions for ${\mathrm {GL}}(n)\times {\mathrm {GL}}(n-1)$ over arbitrary number fields.
For the launch vehicle attitude control problem, traditional methods can seldom accurately identify the fault types, making the control method lack of pertinence, which largely affects the effect of attitude control. This paper proposes an active fault tolerant control strategy, which mainly includes fault diagnosis and fault tolerant control. In the fault diagnosis part, a small deviation attitude dynamics model of the launch vehicle is established, Kalman filters with different structures are designed to detect and isolate faults through residual changes, and the fault quantity of the actuator is further estimated. In the fault tolerant control part, the following control scheme is adopted according to the above diagnostic information: when the sensor fault is detected, the sensor measurement data is reconstructed; when the actuator fault is identified, the control allocation matrix is reconstructed. Simulation results show that the proposed method can effectively diagnose sensor fault and actuator faults, and significantly improve attitude tracking accuracy and control adjustment time.
Functional montmorillonite can be dispersed in polymer coatings and organic species and polymers can be intercalated into the interlayer space or grafted onto the surface of the functional montmorillonite. The addition of functional montmorillonite into polymer-based coatings can significantly improve anti-corrosion, refractory, super-hydrophobicity, antibacterial activity, and absorption of solar radiation by the resulting montmorillonite/polymer coatings. Montmorillonite can be functionalized for this purpose by ion exchange, intercalation, exfoliation, or combinations of these treatments. The rigid montmorillonite layers interspersed within the polymer matrix inhibit the penetration of corrosive substances, minimize the impact of high-temperature airflow, and thereby lead to strong resistance of the coating to corrosion and fire. The combination of polymers and dispersed montmorillonite nanolayers, which are modified by metal ions, metal oxides, and hydrophobic organic species, allows the resulting composite coating to have quite a rough surface and a much smaller surface free energy so that the montmorillonite/polymer coating possesses superhydrophobicity. The interlayer space of functional montmorillonite can also host or encapsulate antibacterial substances, phase-change materials, and solar energy-absorbing materials. Moreover, it can act as a template to make these guest species exist in a more stable and ordered state. Literature surveys suggest that future work on the functional montmorillonite/polymer coatings should be targeted at the manufacture of functional montmorillonite nanolayers by finding more suitable modifiers and tuning the dispersion and funtionalities of montmorillonite in the coatings.
The poor environmental stability of natural anthocyanin hinders its usefulness in various functional applications. The objectives of the present study were to enhance the environmental stability of anthocyanin extracted from Lycium ruthenicum by mixing it with montmorillonite to form an organic/inorganic hybrid pigment, and then to synthesize allochroic biodegradable composite films by incorporating the hybrid pigment into sodium alginate and test them for potential applications in food testing and packaging. The results of X-ray diffraction, Fourier-transform infrared spectroscopy, and use of the Brunauer–Emmett–Teller method and zeta potential demonstrated that anthocyanin was both adsorbed on the surface and intercalated into the interlayer of montmorillonite via host–guest interaction, and the hybrid pigments obtained allowed good, reversible, acid/base behavior after exposure to HCl and NH3 atmospheres. The composite films containing hybrid pigments had good mechanical properties due to the uniform dispersion of the pigments in a sodium alginate substrate and the formation of hydrogen bonds between them. Interestingly, the composite films also exhibited reversible acidichromism. The as-prepared hybrid pigments in composite films could, therefore, serve simultaneously as a reinforced material and as a smart coloring agent for a polymer substrate.
National health insurance (NHI) Taiwan has provided additional markups on dental service fees for people with specific disabilities, and the expenditure has increased significantly from TWD473 million (USD15 million) in 2016 to TWD722 million (USD24 million) in 2022. The purpose of this study was to determine oral health risk and to develop a risk assessment model for capitation outpatient dental payments in children with Autism.
Methods
Based on the literature and expert opinion, we developed a level of oral health risk model from the claim records of 2019. The model uses oral outpatient claim data to analyze: (i) the degree of caries disease; (ii) the level of dental fear or cooperation; and (iii) the level of tooth structure. Each factor was given a score from zero to four and a total score was calculated. Low-, medium-, and high-risk groups were formed based on the total points. The oral health risk capitation models are estimated by ordinary least squares using an individual’s annual outpatient dental expenditure in 2019 as the dependent variable. For subgroups based on age group and level of disability, expenditures predicted by the models are compared with actual outpatient dental expenditures. Predictive R-squared and predictive ratios were used to evaluate the model’s predictability.
Results
The demographic variables, level of oral health risk, preventive dental care, and the type of dental health care predicted 30 percent of subsequent outpatient dental expenditure in children with autism. For subgroups (age group and disability level) of high-risk patients, the model substantially overpredicted the expenditure, whereas underprediction occurred in the low-risk group.
Conclusions
The risk-adjusted model based on principal oral health was more accurate in predicting an individual’s future expenditure than the relevant study in Taiwan. The finding provides insight into the important risk factor in the outpatient dental expenditure of children with autism and the fund planning of dental services for people with specific disabilities.
All-fiber coherent beam combiners based on the self-imaging effect can achieve a near-perfect single laser beam, which can provide a promising way to overcome the power limitation of a single-fiber laser. One of the key points is combining efficiency, which is determined by various mismatches during fabrication. A theoretical model has been built, and the mismatch error is analyzed numerically for the first time. The mismatch errors have been numerically studied with the beam quality and combining efficiency being chosen as the evaluation criteria. The tolerance of each mismatch error for causing 1% loss is calculated to guide the design of the beam combiners. The simulation results are consistent with the experimental results, which show that the mismatch error of the square-core fiber is the main cause of the efficiency loss. The results can provide useful guidance for the fabrication of all-fiber coherent beam combiners.
Purple nutsedge (Cyperus rotundus L.) is a globally distributed noxious weed that poses a significant challenge for control due to its fast and efficient propagation through the tuber, which is the primary reproductive organ. Gibberellic acid (GA3) has proven to be crucial for tuberization in tuberous plants. Therefore, understanding the relationship between GA3 and tuber development and propagation of C. rotundus will provide valuable information for controlling this weed. This study shows that the GA3 content decreases with tuber development, which corresponds to lower expression of bioactive GA3 synthesis genes (CrGA20ox, two CrGA3ox genes) and two upregulated GA3 catabolism genes (CrGA2ox genes), indicating that GA3 is involved in tuber development. Simultaneously, the expression of two CrDELLA genes and CrGID1 declines with tuber growth and decreased GA3, and yeast two-hybrid assays confirm that the GA3 signaling is DELLA-dependent. Furthermore, exogenous application of GA3 markedly reduces the number and the width of tubers and represses the growth of the tuber chain, further confirming the negative impact that GA3 has on tuber development and propagation. Taken together, these results demonstrate that GA3 is involved in tuber development and regulated by the DELLA-dependent pathway in C. rotundus and plays a negative role in tuber development and propagation.
A variable annuity is a modern life insurance product that offers its policyholders participation in investment with various guarantees. To address the computational challenge of valuing large portfolios of variable annuity contracts, several data mining frameworks based on statistical learning have been proposed in the past decade. Existing methods utilize regression modeling to predict the market value of most contracts. Despite the efficiency of those methods, a regression model fitted to a small amount of data produces substantial prediction errors, and thus, it is challenging to rely on existing frameworks when highly accurate valuation results are desired or required. In this paper, we propose a novel hybrid framework that effectively chooses and assesses easy-to-predict contracts using the random forest model while leaving hard-to-predict contracts for the Monte Carlo simulation. The effectiveness of the hybrid approach is illustrated with an experimental study.
Universal admission screening and follow-up symptom-based testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may play critical roles in controlling nosocomial transmission. We describe the performance of test strategies for inpatients and their companions during various disease incidences in Taiwan.
Design:
Retrospective population-based cohort study.
Setting:
The study was conducted across 476 hospitals in Taiwan.
Methods:
The data for both testing strategies by reverse transcription-polymerase chain reaction for SARS-CoV-2 in newly admitted patients and their companions during May 2021—June 2022 were extracted and analyzed.
Results:
The positivity rate of universal admission screening was 0.76% (14,640 of 1,928,676) for patients and 0.37% (5,372 of 1,438,944) for companions. The weekly community incidences of period 1 (May 2021–June 2021), period 2 (July 2021–March 2022), and period 3 (April 2022–June 2022) were 6.57, 0.27, and 1,261, respectively, per 100,000 population. The positivity rates of universal admission screening for patients and companions (4.39% and 2.18%) in period 3 were higher than those in periods 1 (0.29% and 0.04%) and 2 (0.03% and 0.003%) (all P < .01). Among the 22,201 confirmed cases, 9.86% were identified by symptom-based testing. The costs and potential savings of universal admission screening for patients and companions achieved a breakeven point when the test strategy was implemented in a period with weekly community incidences of 27 and 358 per 100,000 population, respectively.
Conclusions:
Universal admission screening and follow-up symptom-based testing is important for reducing nosocomial transmission. Implementing universal admission screening at an appropriate time would balance the benefits with costs and potential unintended harms.
Burn patients are at high risk of central line–associated bloodstream infection (CLABSI). However, the diagnosis of such infections is complex, resource-intensive, and often delayed. This study aimed to investigate the epidemiology of CLABSI and develop a prediction model for the infection in burn patients. The study analysed the infection profiles, clinical epidemiology, and central venous catheter (CVC) management of patients in a large burn centre in China from January 2018 to December 2021. In total, 222 burn patients with a cumulative 630 CVCs and 5,431 line-days were included. The CLABSI rate was 23.02 CVCs per 1000 line-days. The three most common bacterial species were Acinetobacter baumannii, Staphylococcus aureus, and Pseudomonas aeruginosa; 76.09% of isolates were multidrug resistant. Compared with a non-CLABSI cohort, CLABSI patients were significantly older, with more severe burns, more CVC insertion times, and longer total line-days, as well as higher mortality. Regression analysis found longer line-days, more catheterisation times, and higher burn wounds index to be independent risk factors for CLABSI. A novel nomogram based on three risk factors was constructed with an area under the receiver operating characteristic curve (AUROC) value of 0.84 (95% CI: 0.782–0.898) with a mean absolute error of calibration curve of 0.023. The nomogram showed excellent predictive ability and clinical applicability, and provided a simple, practical, and quantitative strategy to predict CLABSI in burn patients.