We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Based on a 4f system, a 0° reflector and a single laser diode side-pump amplifier, a new amplifier is designed to compensate the spherical aberration of the amplified laser generated by a single laser diode side-pump amplifier and enhance the power of the amplified laser. Furthermore, the role of the 4f system in the passive spherical aberration compensation and its effect on the amplified laser are discussed in detail. The results indicate that the amplification efficiency is enhanced by incorporating a 4f system in a double-pass amplifier and placing a 0° reflector only at the focal point of the single-pass amplified laser. This method also effectively uses the heat from the gain medium (neodymium-doped yttrium aluminium garnet) of the amplifier to compensate the spherical aberration of the amplified laser.
In this paper, we study the rapid transition in Richtmyer–Meshkov instability (RMI) with reshock through three-dimensional double-layer swirling vortex rings. The rapid transition in RMI with reshock has an essential influence on the evolution of supernovas and the ignition of inertial confinement fusion, which has been confirmed in numerical simulations and experiments in shock-tube and high-energy-density facilities over the past few years. Vortex evolution has been confirmed to dominate the late-time nonlinear development of the perturbed interface. However, few studies have investigated the three-dimensional characteristics and nonlinear interactions among vortex structures during the transition to turbulent flows. The coexistence of co-rotating and counter-rotating vortices is hypothesized to induce successive large-scale strain fields, which are the main driving sources for rapid development. The three-dimensional effect is reflected in the presence of local swirling motion in the azimuthal direction, and it decreases the translation velocity of a vortex ring. Large-, middle- and small-scale strain fields are employed to describe the development process of RMI with reshock, e.g. vorticity deposited by the reshock, formation of the coexistence of the co-rotating and counter-rotating vortices, iterative cascade under the amplification of the strain fields and viscous dissipation to internal energy. This provides theoretical suggestions for designing practical applications, such as the estimation of the hydrodynamic instability and mixing during the late-time acceleration phase of the inertial confinement fusion.
Isolated multi-MeV $\gamma$-rays with attosecond duration, high collimation and beam angular momentum (BAM) may find many interesting applications in nuclear physics, astrophysics, etc. Here, we propose a scheme to generate such $\gamma$-rays via nonlinear Thomson scattering of a rotating relativistic electron sheet driven by a few-cycle twisted laser pulse interacting with a micro-droplet target. Our model clarifies the laser intensity threshold and carrier-envelope phase effect on the generation of the isolated electron sheet. Three-dimensional numerical simulations demonstrate the $\gamma$-ray emission with 320 attoseconds duration and peak brilliance of $9.3\times 10^{24}$ photons s${}^{-1}$ mrad${}^{-2}$ mm${}^{-2}$ per 0.1$\%$ bandwidth at 4.3 MeV. The $\gamma$-ray beam carries a large BAM of $2.8 \times 10^{16}\mathrm{\hslash}$, which arises from the efficient BAM transfer from the rotating electron sheet, subsequently leading to a unique angular distribution. This work should promote the experimental investigation of nonlinear Thomson scattering of rotating electron sheets in large laser facilities.
EXOSC10 is an exosome-associated ribonuclease that degrades and processes a wide range of transcripts in the nucleus. The initial segment (IS) of the epididymis is crucial for sperm transport and maturation in mice by affecting the absorption and secretion that is required for male fertility. However, the role of EXOSC10 ribonuclease-mediated RNA metabolism within the IS in the regulation of gene expression and sperm maturation remains unknown. Herein, we established an Exosc10 conditional knockout (Exosc10 cKO) mouse model by crossing Exosc10F/F mice with Lcn9-Cre mice which expressed recombinase in the principal cells of IS as early as post-natal day 17. Morphological and histological analyses revealed that Exosc10 cKO males had normal spermatogenesis and development of IS. Moreover, the sperm concentration, morphology, motility, and frequency of acrosome reactions in the cauda epididymides of Exosc10 cKO mice were comparable with those of control mice. Thus, Exosc10 cKO males had normal fertility. Collectively, our genetic mouse model and findings demonstrate that loss of EXOSC10 in the IS of epididymis is dispensable for sperm maturation and male fertility.
This study aimed to analyse the spatial and temporal patterns of disease burden attributed to high BMI (DB-hBMI) from 1990 to 2019 in Belt and Road Initiative (BRI) countries, in light of increasing hBMI prevalence worldwide.
Design:
The study was a secondary analysis of Global Burden of Disease 2019 (GBD 2019) that analysed (using Joinpoint regression analysis) numbers and the age-standardised rate of mortality and disability-adjusted life years (DALY) of hBMI-induced diseases and their trends from 1990 to 2019 and in the final decade.
Setting:
GBD 2019 study data for BRI countries were categorised by country, age, gender and disease.
Participants:
GBD 2019 data were used to analyse DB-hBMI in BRI countries.
Results:
In 2019, China, India and Russia reported the highest mortality and DALY among BRI countries. From 1990 to 2019, the age-standardised DALY increased in Southeast Asia and South Asia, whereas many European countries saw declines. Notably, Bangladesh, Nepal and Vietnam showed the steepest increases, with average annual percentage change (AAPC) values of 4·42 %, 4·19 % and 4·28 %, respectively (all P < 0·05). In contrast, Israel, Slovenia and Poland experienced significant reductions, with AAPC values of –1·70 %, –1·63 % and –1·58 %, respectively (all P < 0·05). The most rapid increases among males were seen in Vietnam, Nepal and Bangladesh, while Jordan, Poland and Slovenia recorded the fastest declines among females. Across most BRI countries, the burden of diabetes and kidney diseases related to hBMI showed a significant uptrend.
Conclusion:
DB-hBMI varies significantly by region, age, gender and disease type across BRI countries. It can pose a substantial threat to public health.
Microstates of an electroencephalogram (EEG) are canonical voltage topographies that remain quasi-stable for 90 ms, serving as the foundational elements of brain dynamics. Different changes in EEG microstates can be observed in psychiatric disorders like schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD). However, the similarities and disparatenesses in whole-brain dynamics on a subsecond timescale among individuals diagnosed with SCZ, BD, and MDD are unclear.
Methods
This study included 1112 participants (380 individuals diagnosed with SCZ, 330 with BD, 212 with MDD, and 190 demographically matched healthy controls [HCs]). We assembled resting-state EEG data and completed a microstate analysis of all participants using a cross-sectional design.
Results
Our research indicates that SCZ, BD, and MDD exhibit distinct patterns of transition among the four EEG microstate states (A, B, C, and D). The analysis of transition probabilities showed a higher frequency of switching from microstates A to B and from B to A in each patient group compared to the HC group, and less frequent transitions from microstates A to C and from C to A in the SCZ and MDD groups compared to the HC group. And the probability of the microstate switching from C to D and D to C in the SCZ group significantly increased compared to those in the patient and HC groups.
Conclusions
Our findings provide crucial insights into the abnormalities involved in distributing neural assets and enabling proper transitions between different microstates in patients with major psychiatric disorders.
To overcome Yb lasing, a kilowatt-level 1535 nm fiber laser is utilized to in-band pump an Er:Yb co-doped fiber (EYDF) amplifier. The output power of a 301 W narrow-linewidth EYDF amplifier operating at 1585 nm, with 3 dB bandwidth of 150 pm and ${M}^2$< 1.4, is experimentally demonstrated. To the best of our knowledge, it is the highest output power achieved in L-band narrow-linewidth fiber amplifiers with good beam quality. Theoretically, a new ion transition behavior among energy levels for in-band pumping EYDF is uncovered, and a spatial-mode-resolved nonlinearity-assisted theoretical model is developed to understand its internal dynamics. Numerical simulations reveal that the reduction in slope efficiency is significantly related to excited-state absorption (ESA). ESA has a nonlinear hindering effect on power scaling. It can drastically lower the pump absorption and slope efficiency with increasing pump power for in-band pumped EYDF amplifiers. Meanwhile, optimized approaches are proposed to improve its power to the kilowatt level via in-band pumping.
Spermatogenesis is a developmental process driven by interactions between germ cells and Sertoli cells. This process depends on appropriate gene expression, which might be regulated by transcription factors. This study focused on Rreb1, a zinc finger transcription factor, and explored its function and molecular mechanisms in spermatogenesis in a mouse model. Our results showed that RREB1 was predominantly expressed in the Sertoli cells of the testis. The decreased expression of RREB1 following injection of siRNA caused impaired Sertoli cell development, which was characterized using a defective blood–testis barrier structure and decreased expression of Sertoli cell functional maturity markers; its essential trigger might be SMAD3 destabilization. The decreased expression of RREB1 in mature Sertoli cells influenced the cell structure and function, which resulted in abnormal spermatogenesis, manifested as oligoasthenoteratozoospermia, and we believe RREB1 plays this role by regulating the transcription of Fshr and Wt1. RREB1 has been reported to activate Fshr transcription, and we demonstrated that the knockdown of Rreb1 caused a reduction in follicle-stimulating hormone receptor (FSHR) in the testis, which could be the cause of the increased sperm malformation. Furthermore, we confirmed that RREB1 directly activates Wt1 promoter activity, and RREB1 downregulation induced the decreased expression of Wt1 and its downstream polarity-associated genes Par6b and E-cadherin, which caused increased germ-cell death and reduced sperm number and motility. In conclusion, RREB1 is a key transcription factor essential for Sertoli cell development and function and is required for normal spermatogenesis.
Childhood maltreatment is an established risk factor for psychopathology. However, it remains unclear how childhood traumatic events relate to mental health problems and how the brain is involved. This study examined the serial mediation effect of brain morphological alterations and emotion-/reward-related functions on linking the relationship from maltreatment to depression. We recruited 156 healthy adolescents and young adults and an additional sample of 31 adolescents with major depressive disorder for assessment of childhood maltreatment, depressive symptoms, cognitive reappraisal and anticipatory/consummatory pleasure. Structural MRI data were acquired to identify maltreatment-related cortical and subcortical morphological differences. The mediation models suggested that emotional maltreatment of abuse and neglect, was respectively associated with increased gray matter volume in the ventral striatum and greater thickness in the middle cingulate cortex. These structural alterations were further related to reduced anticipatory pleasure and disrupted cognitive reappraisal, which contributed to more severe depressive symptoms among healthy individuals. The above mediating effects were not replicated in our clinical group partly due to the small sample size. Preventative interventions can target emotional and reward systems to foster resilience and reduce the likelihood of future psychiatric disorders among individuals with a history of maltreatment.
In order to develop high-performance adsorbents to remove toxic methylene blue (MB) from wastewater, palygorskite (Plg) was utilized as a template to prepare palygorskite/carbon (Plg/C) composites by using a hydrothermal reaction in the presence of glucose. The porous Plg/C composites were then activated with ZnCl2. The effects of the dose of the activator and the activation temperature on the crystal structure, micro-morphology, specific surface area, and adsorption performance of the porous Plg/C composites were studied systematically here. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results indicated that the crystal structure of Plg was destroyed during the activation process and irregular porous carbon was closely attached to the residual aluminosilicate skeleton. The activation was optimized at 400°C with a ZnCl2:Plg/C impregnation ratio of 2:1. The sample had a specific surface area of 1497.88 m2/g, together with a total pore volume and micropore volume of 1.0355 and 0.5464 cm3/g, respectively. The MB adsorption capacity was 381.04 mg/g. Such inexpensive, high-performance, porous Plg/C composites could find potential applications in wastewater treatment.
In order to establish a compact all-optical Thomson scattering source, experimental studies were conducted on the 45 TW Ti: sapphire laser facility. By including a steel wafer, mixed gas, and plasma mirror into a double-exit jet, several mechanisms, such as shock-assisted ionization injection, ionization injection, and driving laser reflection, were integrated into one source. So, the source of complexity was remarkably reduced. Electron bunches with central energy fluctuating from 90 to 160 MeV can be produced. Plasma mirrors were used to reflect the driving laser. The scattering of the reflected laser on the electron bunches led to the generation of X-ray photons. Through comparing the X-ray spots under different experimental conditions, it is confirmed that the X-ray photons are generated by Thomson scattering. For further application, the energy spectra and source size of the Thomson scattering source were measured. The unfolded spectrum contains a large amount of low-energy photons besides a peak near 67 keV. Through importing the electron energy spectrum into the Monte Carlo simulation code, the different contributions of the photons with small and large emitting angles can be used to explain the origin of the unfolded spectrum. The maximum photon energy extended to about 500 keV. The total photon production was 107/pulse. The FWHM source size was about 12 μm.
A rhamnolipid-layered double hydroxide (RL-LDH) nanocomposite, derived from the rhamnolipid (RL) biosurfactant, was synthesized through a delamination/reassembling process. The adsorption characteristics of Cu(II) on RL-LDH were investigated in detail and the results indicated the potential of using RL-LDH as an environmentally friendly adsorbent to remove Cu(II). The fabricated RL-LDH nanocomposite was characterized using powder X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, elemental chemical composition, and specific surface area analyses. Batch adsorption experiments were conducted to study the influence of various factors, such as contact time, initial Cu(II) concentration, temperature, initial solution pH, and electrolyte concentration on Cu(II) adsorption by the RL-LDH nanocomposite. The RL-LDH nanocomposite had a low surface area of 11.71 m2 g−1, which suggests that surface adsorption would not be important in Cu(II) adsorption. The Cu(II) adsorption data fitted the Freundlich model well at pH 5.5, whereas the adsorption kinetics were accurately described by a pseudo-second-order kinetics model. Chemical binding, that is, the formation of a RL-Cu(II) complex in the LDH interlayer, was assumed to be the rate-limiting step in the adsorption process. Thermodynamic parameters that included Gibbs free energy, enthalpy, and entropy changes were also calculated. The adsorption was found to be a spontaneous and exothermic chemisorption process. Furthermore, the adsorption properties of RL-LDH for Cu(II) were compared to Cu(II) adsorption using other adsorbents.
All-fiber coherent beam combiners based on the self-imaging effect can achieve a near-perfect single laser beam, which can provide a promising way to overcome the power limitation of a single-fiber laser. One of the key points is combining efficiency, which is determined by various mismatches during fabrication. A theoretical model has been built, and the mismatch error is analyzed numerically for the first time. The mismatch errors have been numerically studied with the beam quality and combining efficiency being chosen as the evaluation criteria. The tolerance of each mismatch error for causing 1% loss is calculated to guide the design of the beam combiners. The simulation results are consistent with the experimental results, which show that the mismatch error of the square-core fiber is the main cause of the efficiency loss. The results can provide useful guidance for the fabrication of all-fiber coherent beam combiners.
For any positive integers $k_1,k_2$ and any set $A\subseteq \mathbb {N}$, let $R_{k_1,k_2}(A,n)$ be the number of solutions of the equation $n=k_1a_1+k_2a_2$ with $a_1,a_2\in A$. Let g be a fixed integer. We prove that if $k_1$ and $k_2$ are two integers with $2\le k_1<k_2$ and $(k_1,k_2)=1$, then there does not exist any set $A\subseteq \mathbb {N}$ such that $R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\mathbb {N}\setminus A,n)=g$ for all sufficiently large integers n, and if $1=k_1<k_2$, then there exists a set A such that $R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\mathbb {N}\setminus A,n)=1$ for all positive integers n.
By combining the technique of energy selective surface and frequency selective rasorber, an energy selective rasorber is proposed, which performs selective energy protection in the low communication frequency band (0.8–2 GHz) and wave-absorbing property in the high-frequency band (6–18 GHz). The design consists of two layers, of which the bottom one contains a lumped diode structure for energy selection function in the transmission band, while together with the top layer, they perform a wideband wave absorbing function. The simulated and measured results agree well with each other, and both show good absorption in 6–18 GHz and energy-selective property around 1.86 GHz. That is, when the incident power changes from −30 to 14 dBm, the reflection coefficient changes from below −22 dB to above −2 dB, while the transmission coefficient changes from above −3 dB to below −17 dB.
There is still controversy about optimal dietary iodine intake as the Universal Salt Iodization policy enforcement in China. A modified iodine balance study was thus conducted to explore the suitable iodine intake in Chinese adult males using the iodine overflow hypothesis. In this study, thirty-eight apparently healthy males (19·1 (sd 0·6) years) were recruited and provided with designed diets. After the 14-d iodine depletion, daily iodine intake gradually increased in the 30-d iodine supplementation, consisting of six stages and each of 5 d. All foods and excreta (urine, faeces) were collected to examine daily iodine intake, iodine excretion and the changes of iodine increment in relation to those values at stage 1. The dose–response associations of iodine intake increment with excretion increment were fitted by the mixed effects models, as well as with retention increment. Daily iodine intake and excretion were 16·3 and 54·3 μg/d at stage 1, and iodine intake increment increased from 11·2 μg/d at stage 2 to 118·0 μg/d at stage 6, while excretion increment elevated from 21·5 to 95·0 μg/d. A zero iodine balance was dynamically achieved as 48·0 μg/d of iodine intake. The estimated average requirement and recommended nutrient intake were severally 48·0 and 67·2 μg/d, which could be corresponded to a daily iodine intake of 0·74 and 1·04 μg/kg per d. The results of our study indicate that roughly half of current iodine intakes recommendation could be enough in Chinese adult males, which would be beneficial for the revision of dietary reference intakes.
The purpose of this study was to analyse the clinical characteristics of patients with severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) PCR re-positivity after recovering from coronavirus disease 2019 (COVID-19). Patients (n = 1391) from Guangzhou, China, who had recovered from COVID-19 were recruited between 7 September 2021 and 11 March 2022. Data on epidemiology, symptoms, laboratory test results and treatment were analysed. In this study, 42.7% of recovered patients had re-positive result. Most re-positive patients were asymptomatic, did not have severe comorbidities, and were not contagious. The re-positivity rate was 39%, 46%, 11% and 25% in patients who had received inactivated, mRNA, adenovirus vector and recombinant subunit vaccines, respectively. Seven independent risk factors for testing re-positive were identified, and a predictive model was constructed using these variables. The predictors of re-positivity were COVID-19 vaccination status, previous SARs-CoV-12 infection prior to the most recent episode, renal function, SARS-CoV-2 IgG and IgM antibody levels and white blood cell count. The predictive model could benefit the control of the spread of COVID-19.
An experimental investigation of the stereocamera's systematic error is carried out to optimize three-dimensional (3-D) dust observation on the HL-2A tokamak. It is found that a larger 3-D region occupied by all calibration points is able to reduce the 3-D reconstruction systematic error of the stereocamera. In addition, the 3-D reconstruction is the most accurate around the region where the calibration points are located. Based on these experimental results, the design of the stereocamera on the HL-2A tokamak is presented, and a set of practical procedures to optimize the 3-D reconstruction accuracy of the stereocamera are proposed.
The study was aimed to evaluate the effect of tumour involvement on resin Yttrium-90 (Y90) activity determination for metastatic liver cancer treatment.
Methods:
One hundred and two cases of resin Y90 microsphere treatment were retrospectively studied. Body surface area (BSA) method was used in the calculation of resin Y90 activity. The total activity (TA) was calculated as a summation of activities obtained from BSA-based calculation and tumour involvement (TI). TI and TA of each case were evaluated. The contributions of TI to TA were calculated with the ratio of TI/TA.
Results:
The average contribution of TI to TA was 4·1%. The contributions were < 5·8% in 75% of the cases, < 2·2% in 50% of the cases and < 1·0% in 25% of the cases.
Conclusions:
Overall the effect of tumour involvement on the activity determination was small. The activity calculation could be simplified by neglecting TI in 25% of the cases where the activity contribution from TI was less than 1%. Contouring tumour and liver structures for TI calculation could be avoided in these cases, and the efficiency of the workflow for resin Y90 procedures could be improved.