Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-01T12:53:14.026Z Has data issue: false hasContentIssue false

Neural Tube Defects and Patterning Defects

from Section 5 - Malformations

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Avagliano, L, Massa, V, George, TM, Qureshy, S, Bulfamante, GP, Finnell, RH. Overview on neural tube defects: From development to physical characteristics. Birth Defects Res. 2019 111(19):1455–67.Google Scholar
O’Rahilly, RR, Müller, F. The Embryonic Human Brain: An Atlas of Developmental Stages, 3rd edition. New York: Wiley; 2006.CrossRefGoogle Scholar
O’Rahilly, R, Muller, F. Bidirectional closure of the rostral neuropore in the human embryo. Am J Anat. 1989;184(4):259–68.Google Scholar
Copp, AJ, Stanier, P, Greene, ND. Neural tube defects: recent advances, unsolved questions, and controversies. Lancet Neurol. 2013;12(8):799810.CrossRefGoogle ScholarPubMed
van Straaten, HWM, Janssen, HCJP, Peeters, MCE, Copp, AJ, Hekking, JWM. Neural tube closure in the chick embryo is multiphasic. Dev Dynamics. 1996;207:309–18.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
van Allen, MI, Kalousek, DK, Chernoff, GF, Juriloff, D, Harris, M, McGillivray, BC, et al. Evidence for multi-site closure of the neural tube in humans. Am J Med Genet. 1993;47:723–43.Google Scholar
Ahmad, FU, Dwarakanath, S, Sharma, BS, Mahapatra, AK. Multiple neural tube defects: a clinical series of seven cases and their embryological basis. Pediatr Neurosurg. 2008;44(4):280–7.Google Scholar
Golden, JA, Chernoff, GF. Multiple sites of anterior neural tube closure in humans: evidence from anterior neural tube defects (anencephaly). Pediatrics. 1995;95(4):506–10.Google Scholar
Mahalik, SK, Vaze, D, Kanojia, RP, Narasimhan, KL, Rao, KL. Multiple neural tube defects may not be very rare. Childs Nerv Syst. 2013;29(4):609–19.Google Scholar
O’Rahilly, R, Muller, F. The two sites of fusion of the neural folds and the two neuropores in the human embryo. Teratology. 2002;65(4):162–70.Google ScholarPubMed
de Bakker, BS, Driessen, S, Boukens, BJD, MJB, van den Hoff, Oostra, RJ. Single-site neural tube closure in human embryos revisited. Clin Anat. 2017;30(7):988–99.CrossRefGoogle ScholarPubMed
Copp, AJ, Harding, BN. Neural tube defects. In: Adle-Biassette, H, Harding, BN, Golden, JA, editors. Developmental Neuropathology, 2nd edition. Hoboken: John Wiley & Sons; 2018. p. 1328.Google Scholar
Nakatsu, T, Uwabe, C, Shiota, K. Neural tube closure in humans initiates at multiple sites: evidence from human embryos and implications for the pathogenesis of neural tube defects. Anat Embryol. 2000;201(6):455–66.CrossRefGoogle ScholarPubMed
van Straaten, HW, Peeters, MC, Hekking, JW, van der Lende T.Neurulation in the pig embryo. Anat Embryol (Berl). 2000;202(2):7584.CrossRefGoogle ScholarPubMed
O’Rahilly, R, Muller, F. The meninges in human development. J Neuropathol Exp Neurol. 1986;45(5):588608.CrossRefGoogle ScholarPubMed
Richtsmeier, JT, Flaherty, K. Hand in glove: brain and skull in development and dysmorphogenesis. Acta Neuropathol. 2013;125(4):469–89.Google Scholar
Di Ieva, A, Bruner, E, Haider, T, Rodella, LF, Lee, JM, Cusimano, MD, et al. Skull base embryology: a multidisciplinary review. Childs Nerv Syst. 2014;30(6):9911000.Google Scholar
Shapiro, R, Robinson, F. The Embryogenesis of the Human Skull: An Anatomic and Radiographic Atlas. Cambridge, MA: Harvard University Press; 1980.Google Scholar
Som, PM, Naidich, TP. Development of the skull base and calvarium: an overview of the progression from mesenchyme to chondrification to ossification. Neurographics. 2013;3:169–84.CrossRefGoogle Scholar
Mandarim-de-Lacerda, CA, Alves, MU. Growth of the cranial bones in human fetuses (2nd and 3rd trimesters). Surg Radiol Anat. 1992;14(2):125–9.Google Scholar
Mekonen, HK, Hikspoors, J, Mommen, G, Kruepunga, N, Kohler, SE, Lamers, WH. Closure of the vertebral canal in human embryos and fetuses. J Anat. 2017;231(2):260–74.Google Scholar
Morris, JK, Wald, NJ. Prevalence of neural tube defect pregnancies in England and Wales from 1964 to 2004. J Med Screen. 2007;14(2):55–9.CrossRefGoogle ScholarPubMed
Nikkila, A, Rydhstrom, H, Kallen, B. The incidence of spina bifida in Sweden 1973–2003: the effect of prenatal diagnosis. Eur J Public Health. 2006;16(6):660–2.Google Scholar
Khoshnood, B, Loane, M, de Walle, H, Arriola, L, Addor, MC, Barisic, I, et al. Long term trends in prevalence of neural tube defects in Europe: population based study. BMJ. 2015;351:h5949.CrossRefGoogle ScholarPubMed
Nikolopoulou, E, Galea, GL, Rolo, A, Greene, ND, Copp, AJ. Neural tube closure: cellular, molecular and biomechanical mechanisms. Development. 2017;144(4):552–66.Google Scholar
Greene, ND, Copp, AJ. Neural tube defects. Annu Rev Neurosci. 2014;37:221–42.Google Scholar
Yamaguchi, Y, Miura, M. How to form and close the brain: insight into the mechanism of cranial neural tube closure in mammals. Cell Mol Life Sci. 2013;70(17):3171–86.CrossRefGoogle ScholarPubMed
Bower, C, Stanley, FJ, Nicol, DJ. Maternal folate status and the risk for neural tube defects. The role of dietary folate. Ann N Y Acad Sci. 1993;678:146–55.Google Scholar
Williams, J, Mai, CT, Mulinare, J, Isenburg, J, Flood, TJ, Ethen, M, et al. Updated estimates of neural tube defects prevented by mandatory folic acid fortification – United States, 1995–2011. MMWR Morb Mortal Wkly Rep. 2015;64(1):15.Google ScholarPubMed
Kancherla, V, Wagh, K, Johnson, Q, Oakley, GP, Jr. A 2017 global update on folic acid-preventable spina bifida and anencephaly. Birth Defects Res. 2018;110(14):1139–47.CrossRefGoogle ScholarPubMed
Au, KS, Findley, TO, Northrup, H. Finding the genetic mechanisms of folate deficiency and neural tube defects-Leaving no stone unturned. Am J Med Genet A. 2017;173(11):3042–57.Google Scholar
Lupo, PJ, Agopian, AJ, Castillo, H, Castillo, J, Clayton, GH, Dosa, NP, et al. Genetic epidemiology of neural tube defects. J Pediatr Rehabil Med. 2017;10(3–4):189–94.CrossRefGoogle ScholarPubMed
Ishida, M, Cullup, T, Boustred, C, James, C, Docker, J, English, C, et al. A targeted sequencing panel identifies rare damaging variants in multiple genes in the cranial neural tube defect, anencephaly. Clin Genet. 2018;93(4):870–9.CrossRefGoogle ScholarPubMed
Amouee, A, Memarzadeh, M, Ashrafi, M, Farid, M, Sanei, MH, Soroori, S, et al. The effects of amniotic fluid on the histopathologic changes of exposed spinal cord in fetal sheep. Arch Iran Med. 2009;12(1):3540.Google ScholarPubMed
Agarwal, R, Thornton, ME, Fonteh, AN, Harrington, MG, Chmait, RH, Grubbs, BH. Amniotic fluid levels of phospholipase A2 in fetal rats with retinoic acid induced myelomeningocele: the potential “second hit” in neurologic damage. J Matern Fetal Neonatal Med. 2016;29(18):3003–8.Google Scholar
Hoving, EW. Nasal encephaloceles. Childs Nerv Syst. 2000;16(10–11):702–6.Google Scholar
Ibrahim, AW, Ashoor, AZ, Satti, MB. Frontal encephalocele and the nasal cavity. Neurochirurgia (Stuttg). 1988;31(1):35–7.Google ScholarPubMed
Turgut, M, Ozcan, OE, Benli, K, Ozgen, T, Gurcay, O, Saglam, S, et al. Congenital nasal encephalocele: a review of 35 cases. J Craniomaxillofac Surg. 1995;23(1):15.CrossRefGoogle ScholarPubMed
Kurban, Y, Sahin, I, Uyar, I, Deveci, S, Gul, D. Heterotopic brain tissue on the face and neck in a neonate: a rare case report and literature review. J Matern Fetal Neonatal Med. 2013;26(6):619–21.Google Scholar
Tonni, G, Lituania, M, Bonasoni, MP, De Felice, C. Prenatal ultrasound and histological diagnosis of fetal nasal glioma (heterotopic central nervous system tissue): report of a new case and review of the literature. Arch Gynecol Obstet. 2011;283 Suppl 1:55–9.Google Scholar
Hedlund, G. Congenital frontonasal masses: developmental anatomy, malformations, and MR imaging. Pediatr Radiol. 2006;36(7):647–62.Google Scholar
Penner, CR, Thompson, L. Nasal glial heterotopia: a clinicopathologic and immunophenotypic analysis of 10 cases with a review of the literature. Ann Diagn Pathol. 2003;7(6):354–9.Google Scholar
Yeoh, GP, Bale, PM, de Silva, M. Nasal cerebral heterotopia: the so-called nasal glioma or sequestered encephalocele and its variants. Pediatr Pathol. 1989;9(5):531–49.Google Scholar
de Villiers, JC, Cluver, PF, Peter, JC. Lipoma of the corpus callosum associated with frontal and facial anomalies. Acta Neurochir Suppl (Wien). 1991;53:16.Google Scholar
Caviness, VS, Jr., Evarard, P. Occipital encephalocele: a pathologic and anatomic analysis. Acta Neuropathol. 1975;32(3):245–55.Google Scholar
Karch, SB, Urich, H. Occipital encephalocele – morphological study. J Neurol Sci. 1972;15(1):89112.Google Scholar
Leong, AS, Shaw, CM. The pathology of occipital encephalocoele and a discussion of the pathogenesis. Pathology. 1979;11(2):223–34.Google Scholar
Lorber, J. The prognosis of occipital encephalocele. Dev Med Child Neurol. 1967; Suppl 13:7586.CrossRefGoogle Scholar
Alexiev, BA, Lin, X, Sun, CC, Brenner, DS. Meckel-Gruber syndrome: pathologic manifestations, minimal diagnostic criteria, and differential diagnosis. Arch Pathol Lab Med. 2006;130(8):1236–8.Google Scholar
Hartill, V, Szymanska, K, Sharif, SM, Wheway, G, Johnson, CA. Meckel-Gruber syndrome: an update on diagnosis, clinical management, and research advances. Front Pediatr. 2017;5:244.CrossRefGoogle ScholarPubMed
Fields, HW, Jr., Metzner, L, Garol, JD, Kokich, VG. The craniofacial skeleton in anencephalic human fetuses. I. Cranial floor. Teratology. 1978;17(1):5765.CrossRefGoogle ScholarPubMed
Garol, JD, Fields, HW, Jr., Metzner, L, Kokich, VG. The craniofacial skeleton in anencephalic human fetuses. II. Calvarium. Teratology. 1978;17(1):6773.CrossRefGoogle ScholarPubMed
Kjaer, I, Keeling, JW, Graem, N. Cranial base and vertebral column in human anencephalic fetuses. J Craniofac Genet Dev Biol. 1994;14(4):235–44.Google Scholar
Saraga-Babic, M, Saraga, M. Role of the notochord in the development of cephalic structures in normal and anencephalic human fetuses. Virchows Arch A Pathol Anat Histopathol. 1993;422(2):161–8.CrossRefGoogle ScholarPubMed
Saraga-Babic, M. Development of the notochord in normal and malformed human embryos and fetuses. Int J Dev Biol. 1991;35(3):345–52.Google Scholar
Bell, JE, Green, RJ. Studies on the area cerebrovasculosa of anencephalic fetuses. J Pathol. 1982;137(4):315–28.Google Scholar
Chaurasia, BD. Forebrain in human anencephaly. Anat Anz. 1977;142(5):471–8.Google ScholarPubMed
Kashani, AH, Hutchins, GM. Meningeal-cutaneous relationships in anencephaly: evidence for a primary mesenchymal abnormality. Hum Pathol. 2001;32(5):553–8.CrossRefGoogle ScholarPubMed
Ganchrow, D, Ornoy, A. Possible evidence for secondary degeneration of central nervous system in the pathogenesis of anencephaly and brain dysraphia. A study in young human fetuses. Virchows Arch A Pathol Anat Histol. 1979;384(3):285–94.CrossRefGoogle ScholarPubMed
Vogel, FS, McClenahan, JL. Anomalies of major cerebral arteries associated with congenital malformations of the brain, with special reference to the pathogenesis of anencephaly. Am J Pathol. 1952;28(4):701–23.Google Scholar
Emery, JL, Kalhan, SC. The pathology of exencephalus. Dev Med Child Neurol Suppl. 1970;Suppl 22:51–64.Google Scholar
Wilkins-Haug, L, Freedman, W. Progression of exencephaly to anencephaly in the human fetus–an ultrasound perspective. Prenat Diagn. 1991;11(4):227–33.CrossRefGoogle ScholarPubMed
Smith, MT, Huntington, HW. Morphogenesis of experimental anencephaly. J Neuropathol Exp Neurol. 1981;40(1):2031.Google Scholar
Urich, H, Herrick, MK. The amniotic band syndrome as a cause of anencephaly. Report of a case. Acta Neuropathol. 1985;67(3–4):190–4.Google ScholarPubMed
Biswas, BP, Chatterjee, G, Biswas, S. Morbid adhesion of placenta on the head of an anencephalic monster. J Indian Med Assoc. 1985;83(6):207–8.Google Scholar
Chaurasia, BD. Amniochorionic bands and adhesions with fetal deformities. Anat Anz. 1978;144(2):158–62.Google Scholar
Tseng, JH, Kuo, MF, Kwang, Tu Y, Tseng, MY. Outcome of untethering for symptomatic spina bifida occulta with lumbosacral spinal cord tethering in 31 patients: analysis of preoperative prognostic factors. Spine J. 2008;8(4):630–8.Google Scholar
Coskun, A, Kiran, G, Ozdemir, O. Craniorachischisis totalis: a case report and review of the literature. Fetal Diagn Ther. 2009;25(1):21–5.Google Scholar
Saraga-Babic, M, Sapunar, D, Stefanovic, V. Histological features of axial structures during embryonic and fetal stages of human craniorachischisis. Acta Neuropathol. 1993;86(3):289–94.Google Scholar
Joo, JG, Beke, A, Papp, C, Szigeti, Z, Csaba, A, Papp, Z. Major diagnostic and pathological features of iniencephaly based on twenty-four cases. Fetal Diagn Ther. 2008;24(1):16.Google Scholar
Rorke-Adams, LB. Pathology of Chiari I and II malformations. In: Tubbs, RS, Oakes, WJ, editors. The Chiari Malformations. New York: Springer; 2013. pp. 103–19.Google Scholar
Masters, CL. Pathogenesis of the Arnold-Chiari malformation: the significance of hydrocephalus and aqueduct stenosis. J Neuropathol Exp Neurol. 1978;37(1):5674.Google Scholar
Barry, A, Patten, BM, Stewart, BH. Possible factors in the development of the Arnold-Chiari malformation. J Neurosurg. 1957;14(3):285301.Google Scholar
Ogryzlo, MA. The Arnold-Chiari malformation. Arch Neurol Psychiatr. 1942;48(1):3046.Google Scholar
Moldenhauer, JS, Flake, AW. Open fetal surgery for neural tube defects. Best Pract Res Clin Obstet Gynaecol. 2019;58:121–32.Google Scholar
Nese, N, Bulbul, Y. Diagnostic value of perinatal autopsies: analysis of 486 cases. J Perinat Med. 2018;46(2):175–81.Google Scholar
Pinar, H, Tatevosyants, N, Singer, DB. Central nervous system malformations in a perinatal/neonatal autopsy series. Pediatr Dev Pathol. 1998;1(1):42–8.CrossRefGoogle Scholar
Nielsen, LA, Maroun, LL, Broholm, H, Laursen, H, Graem, N. Neural tube defects and associated anomalies in a fetal and perinatal autopsy series. APMIS. 2006;114(4):239–46.Google Scholar
Hartge, DR, Gembicki, M, Rody, A, Weichert, J. Neural tube defects in embryonic life: lessons learned from 340 early pregnancy failures. J Ultrasound Med. 2018;37(12):2841–7.Google Scholar
Kar, A, Kar, T, Kanungo, S, Guru, L, Rath, J, Dehuri, P. Risk factors, organ weight deviation and associated anomalies in neural tube defects: A prospective fetal and perinatal autopsy series. Indian J Pathol Microbiol. 2015;58(3):285–91.CrossRefGoogle ScholarPubMed
Sadovnick, AD, Baird, PA. Congenital malformations associated with anencephaly in liveborn and stillborn infants. Teratology. 1985;32(3):355–61.Google Scholar
Antonsson, P, Sundberg, A, Kublickas, M, Pilo, C, Ghazi, S, Westgren, M, et al. Correlation between ultrasound and autopsy findings after 2nd trimester terminations of pregnancy. J Perinat Med. 2008;36(1):5969.Google Scholar
Shelmerdine, SC, Arthurs, OJ, Gilpin, I, Norman, W, Jones, R, Taylor, AM, et al. Is traditional perinatal autopsy needed after detailed fetal ultrasound and post-mortem MRI? Prenat Diagn. 2019; 39(9):818–829.Google Scholar
ten Donkelaar, HJ, Mullaart, RA, Hori, A, Shiota, K. Neurulation and neural tube defects. In: ten Donkelaar, HJ, Lammens, M, Hori, A, editors. Clinical Neuroembryology Development and Developmental Disorders of the Human Central Nervous System, 2nd edition. Berlin: Springer; 2014. pp. 145–90.Google Scholar

References

O’Rahilly, RR, Müller, F. The Embryonic Human Brain: An Atlas of Developmental Stages 3rd edition. New York: Wiley; 2006.Google Scholar
Fallet-Bianco, C. Neuropathology of holoprosencephaly. Am J Med Genet C Semin Med Genet. 2018;178(2):214–28.Google Scholar
Sarnat, HB, Yu, W. Maturation and dysgenesis of the human olfactory bulb. Brain Pathol. 2016;26(3):301–18.CrossRefGoogle ScholarPubMed
Maione, L, Benadjaoud, S, Eloit, C, Sinisi, AA, Colao, A, Chanson, P, et al. Computed tomography of the anterior skull base in Kallmann syndrome reveals specific ethmoid bone abnormalities associated with olfactory bulb defects. J Clin Endocrinol Metab. 2013;98(3):E537–E46.Google Scholar
Yi, L, Liu, Z, Deng, C, Li, X, Wang, K, Deng, K, et al. Epidemiological characteristics of holoprosencephaly in China, 2007–2014: A retrospective study based on the national birth defects surveillance system. PLoS One. 2019;14(6):e0217835.Google Scholar
Summers, AD, Reefhuis, J, Taliano, J, Rasmussen, SA. Nongenetic risk factors for holoprosencephaly: an updated review of the epidemiologic literature. Am J Med Genet C Semin Med Genet. 2018;178(2):151–64.Google Scholar
Ong, S, Tonks, A, Woodward, ER, Wyldes, MP, Kilby, MD. An epidemiological study of holoprosencephaly from a regional congenital anomaly register: 1995–2004. Prenat Diagn. 2007;27(4):340–7.CrossRefGoogle ScholarPubMed
Orioli, IM, Castilla, EE. Epidemiology of holoprosencephaly: Prevalence and risk factors. Am J Med Genet C Semin Med Genet. 2010;154 C(1):1321.Google Scholar
Heinke, D, Nestoridi, E, Hernandez-Diaz, S, Williams, PL, Rich-Edwards, JW, Lin, AE, et al. Risk of stillbirth for fetuses with specific birth defects. Obstet Gynecol. 2020 135(1):133–140 Google Scholar
Abe, Y, Kruszka, P, Martinez, AF, Roessler, E, Shiota, K, Yamada, S, et al. Clinical and demographic evaluation of a holoprosencephaly cohort from the Kyoto Collection of Human Embryos. Anat Rec. 2018;301(6):973–86.Google Scholar
Shiota, K, Yamada, S. Early pathogenesis of holoprosencephaly. Am J Med Genet C Semin Med Genet. 2010;154C(1):22–8.Google Scholar
Vaz, SS, Chodirker, B, Prasad, C, Seabrook, JA, Chudley, AE, Prasad, AN. Risk factors for nonsyndromic holoprosencephaly: a Manitoba case-control study. Am J Med Genet A. 2012;158A(4):751–8.CrossRefGoogle ScholarPubMed
Grinblat, Y, Lipinski, RJ. A forebrain undivided: Unleashing model organisms to solve the mysteries of holoprosencephaly. Dev Dyn. 2019;248(8):626–33.Google Scholar
Kruszka, P, Muenke, M. Syndromes associated with holoprosencephaly. Am J Med Genet C Semin Med Genet. 2018;178C(2):229–37.CrossRefGoogle ScholarPubMed
Hu, T, Kruszka, P, Martinez, AF, Ming, JE, Shabason, EK, Raam, MS, et al. Cytogenetics and holoprosencephaly: A chromosomal microarray study of 222 individuals with holoprosencephaly. Am J Med Genet C Semin Med Genet. 2018;178C(2):175–86.Google Scholar
Roessler, E, Muenke, M. The molecular genetics of holoprosencephaly. Am J Med Genet C Semin Med Genet. 2010;154C(1):5261.Google Scholar
Bendavid, C, Dupe, V, Rochard, L, Gicquel, I, Dubourg, C, David, V. Holoprosencephaly: An update on cytogenetic abnormalities. Am J Med Genet C Semin Med Genet. 2010;154C(1):8692.Google Scholar
Roessler, E, Hu, P, Marino, J, Hong, S, Hart, R, Berger, S, et al. Common genetic causes of holoprosencephaly are limited to a small set of evolutionarily conserved driver genes of midline development coordinated by TGF-beta, hedgehog, and FGF signaling. Hum Mutat. 2018;39(10):1416–27.Google Scholar
Kim, A, Savary, C, Dubourg, C, Carre, W, Mouden, C, Hamdi-Roze, H, et al. Integrated clinical and omics approach to rare diseases: novel genes and oligogenic inheritance in holoprosencephaly. Brain. 2019;142(1):3549.Google Scholar
Monuki, ES. The morphogen signaling network in forebrain development and holoprosencephaly. J Neuropathol Exp Neurol. 2007;66(7):566–75.Google Scholar
Chi, L, Fan, B, Feng, D, Chen, Z, Liu, Z, Hui, Y, et al. The dorsoventral patterning of human forebrain follows an activation/transformation model. Cereb Cortex. 2017;27(5):2941–54.Google Scholar
Gulacsi, A, Anderson, SA. Shh maintains Nkx2.1 in the MGE by a Gli3-independent mechanism. Cereb Cortex. 2006;16 Suppl 1:i89–I95.CrossRefGoogle ScholarPubMed
Radonjic, NV, Memi, F, Ortega, JA, Glidden, N, Zhan, H, Zecevic, N. The role of sonic hedgehog in the specification of human cortical progenitors in vitro. Cereb Cortex. 2016;26(1):131–43.Google Scholar
Volpe, JJ. Normal and abnormal human brain development. Clin Perinatol. 1977;4(1):330.Google Scholar
Calloni, SF, Caschera, L, Triulzi, FM. Disorders of ventral induction / spectrum of holoprosencephaly. Neuroimaging Clin N Am. 2019;29(3):411–21.Google Scholar
Volpe, P, Campobasso, G, De Robertis, V, Rembouskos, G. Disorders of prosencephalic development. Prenat Diagn. 2009;29(4):340–54.CrossRefGoogle ScholarPubMed
von Boletzky, S. On the lay-out of the midgut rudiment in Loligo pealei (LeSueur). Experientia. 1970;26(8):880–1.Google ScholarPubMed
Dale, L, Slack, JM. Regional specification within the mesoderm of early embryos of Xenopus laevis. Development. 1987;100(2):279–95.Google Scholar
Spencer, R. Theoretical and analytical embryology of conjoined twins: part I: embryogenesis. Clin Anat. 2000;13(1):3653.Google Scholar
Spencer, R. Theoretical and analytical embryology of conjoined twins: part II: adjustments to union. Clin Anat. 2000;13(2):97120.Google Scholar
Spitz, L. Conjoined twins. Prenat Diagn. 2005;25(9):814–9.Google Scholar
Weber, MA, Sebire, NJ. Genetics and developmental pathology of twinning. Semin Fetal Neonatal Med. 2010;15(6):313–8.Google Scholar
Boer, LL, Schepens-Franke, AN, Oostra, RJ. Two is a crowd: on the enigmatic etiopathogenesis of conjoined twinning. Clin Anat. 2019;32(5):722–41.CrossRefGoogle ScholarPubMed
McNamara, HC, Kane, SC, Craig, JM, Short, RV, Umstad, MP. A review of the mechanisms and evidence for typical and atypical twinning. Am J Obstet Gynecol. 2016;214(2):172–91.Google Scholar
Wells, LJ. A case of iliothoracopagus (dicephalus tribea chius tripus) with a consideration of the “budding” and “fission” theories of twinning. Anat Rec. 1945;92(1):121.Google Scholar
Zizic Mitrecic, M, Mitrecic, D, Pochet, R, Kostovic-Knezevic, L, Gajovic, S. The mouse gene Noto is expressed in the tail bud and essential for its morphogenesis. Cells Tissues Organs. 2010;192(2):8592.Google Scholar
Corallo, D, Trapani, V, Bonaldo, P. The notochord: structure and functions. Cell Mol Life Sci. 2015;72(16):29893008.Google Scholar
Barr, M, Jr. Facial duplication: case, review, and embryogenesis. Teratology. 1982;25(2):153–9.Google Scholar
Lee, JD, Anderson, KV. Morphogenesis of the node and notochord: the cellular basis for the establishment and maintenance of left-right asymmetry in the mouse. Dev Dyn. 2008;237(12):3464–76.CrossRefGoogle ScholarPubMed
de Bree, K, de Bakker, BS, Oostra, RJ. The development of the human notochord. PLoS One. 2018;13(10):e0205752.Google Scholar
Yamanaka, Y, Tamplin, OJ, Beckers, A, Gossler, A, Rossant, J. Live imaging and genetic analysis of mouse notochord formation reveals regional morphogenetic mechanisms. Dev Cell. 2007;13(6):884–96.Google Scholar
Wu, J, Staffenberg, DA, Mulliken, JB, Shanske, AL. Diprosopus: a unique case and review of the literature. Teratology. 2002;66(6):282–7.Google Scholar
Sur, A, Sardar, SK, Paria, A. Caudal duplication syndrome. J Clin Neonatol. 2013;2(2):101–2.Google Scholar
Slavotinek, A, Parisi, M, Heike, C, Hing, A, Huang, E. Craniofacial defects of blastogenesis: duplication of pituitary with cleft palate and orophgaryngeal tumors. Am J Med Genet A. 2005;135(1):1320.Google Scholar
Machin, GA. Conjoined twins: implications for blastogenesis. Birth Defects Orig Artic Ser. 1993;29(1):141–79.Google Scholar
Levin, M, Roberts, DJ, Holmes, LB, Tabin, C. Laterality defects in conjoined twins. Nature. 1996;384(6607):321.Google Scholar
Maruotti, GM, Paladini, D, Napolitano, R, Mazzarelli, LL, Russo, T, Quarantelli, M, et al. Prenatal 2D and 3D ultrasound diagnosis of diprosopus: case report with post-mortem magnetic resonance images (MRI) and review of the literature. Prenat Diagn. 2009;29(10):992–4.CrossRefGoogle ScholarPubMed
Bidondo, MP, Groisman, B, Tardivo, A, Tomasoni, F, Tejeiro, V, Camacho, I, et al. Diprosopus: Systematic review and report of two cases. Birth Defects Res A Clin Mol Teratol. 2016;106(12):9931007.Google Scholar
Carles, D, Weichhold, W, Alberti, EM, Leger, F, Pigeau, F, Horovitz, J. Diprosopia revisited in light of the recognized role of neural crest cells in facial development. J Craniofac Genet Dev Biol. 1995;15(2):90–7.Google Scholar
Slager, UT, Anderson, VM, Handmaker, SD. Cephalothoracopagus janiceps malformation. A contribution to the pathogenesis of cerebral malformation. Arch Neurol. 1981;38(2):103–8.CrossRefGoogle Scholar
Muller, F, O’Rahilly, R. The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat Embryol (Berl). 1987;176(4):413–30.Google Scholar
Muller, F, O’Rahilly, R. The development of the human brain from a closed neural tube at stage 13. Anat Embryol (Berl). 1988;177(3):203–24.Google Scholar
Muller, F, O’Rahilly, R. The primitive streak, the caudal eminence and related structures in staged human embryos. Cells Tissues Organs. 2004;177(1):220.Google Scholar
Pang, D, Dias, MS, Ahab-Barmada, M. Split cord malformation: Part I: A unified theory of embryogenesis for double spinal cord malformations. Neurosurgery. 1992;31(3):451–80.Google Scholar
Yang, HJ, Lee, DH, Lee, YJ, Chi, JG, Lee, JY, Phi, JH, et al. Secondary neurulation of human embryos: morphological changes and the expression of neuronal antigens. Childs Nerv Syst. 2014;30(1):7382.Google Scholar
Dias, MS, Pang, D. Split cord malformations. Neurosurg Clin N Am. 1995;6(2):339–58.Google Scholar
Saraga-Babic, M, Stefanovic, V, Wartiovaara, J, Lehtonen, E. Spinal cord-notochord relationship in normal human embryos and in a human embryo with double spinal cord. Acta Neuropathol. 1993;86(5):509–14.Google Scholar
Dominguez, R, Rott, J, Castillo, M, Pittaluga, RR, Corriere, JN, Jr. Caudal duplication syndrome. Am J Dis Child. 1993;147(10):1048–52.Google Scholar
Bajpai, M, Das, K, Gupta, AK. Caudal duplication syndrome: more evidence for theory of caudal twinning. J Pediatr Surg. 2004;39(2):223–5.Google Scholar
Wilder, HH. The morphology of cosmobia; speculations concerning the significance of certain types of monsters. Am J Anat. 1908;8(4):355440.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×