Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-01T11:53:07.641Z Has data issue: false hasContentIssue false

Hydrocephalus

from Section 5 - Malformations

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rekate, HL. A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol. 2009;16(1):915.Google Scholar
Nagra, G, Del Bigio, MR. Pathology of pediatric hydrocephalus. In: Cinalli, G, Özek, MM, Sainte-Rose, C, editors. Pediatric Hydrocephalus, 2nd edition. New York: Springer; 2019. pp. 359–77.Google Scholar
Hannon, T, Tennant, PW, Rankin, J, Robson, SC. Epidemiology, natural history, progression, and postnatal outcome of severe fetal ventriculomegaly. Obstet Gynecol. 2012;120(6):1345–53.Google Scholar
Weller, RO. Microscopic morphology and histology of the human meninges. Morphologie. 2005;89(284):2234.CrossRefGoogle ScholarPubMed
Johnston, M, Zakharov, A, Papaiconomou, C, Salmasi, G, Armstrong, D. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res. 2004;1(1):2.Google Scholar
Fox, RJ, Walji, AH, Mielke, B, Petruk, KC, Aronyk, KE. Anatomic details of intradural channels in the parasagittal dura: a possible pathway for flow of cerebrospinal fluid. Neurosurgery. 1996;39(1):8490.Google Scholar
Papaiconomou, C, Bozanovic-Sosic, R, Zakharov, A, Johnston, M. Does neonatal cerebrospinal fluid absorption occur via arachnoid projections or extracranial lymphatics? Am J Physiol Regul Integr Comp Physiol. 2002;283(4):R869–R76.Google Scholar
Rekate, HL. A consensus on the classification of hydrocephalus: its utility in the assessment of abnormalities of cerebrospinal fluid dynamics. Childs Nerv Syst. 2011;27(10):1535–41.Google Scholar
Schroth, G, Klose, U. Cerebrospinal fluid flow. I. Physiology of cardiac-related pulsation. Neuroradiology. 1992;35(1):19.CrossRefGoogle ScholarPubMed
Wagshul, ME, Eide, PK, Madsen, JR. The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS. 2011;8(1):5.CrossRefGoogle Scholar
Cardoso, ER, Del Bigio, MR, Schroeder, G. Age-dependent changes of cerebral ventricular size. Part I: Review of intracranial fluid collections. Acta Neurochir (Wien). 1989;97(1–2):40–6.Google Scholar
Del Bigio, MR. Ependymal cells: biology and pathology. Acta Neuropathol. 2010;119(1):5573.Google Scholar
Nigri, F, Gobbi, GN, da Costa Ferreira Pinto, PH, Simoes, EL, Caparelli-Daquer, EM. Hydrocephalus caused by unilateral foramen of Monro obstruction: A review on terminology. Surg Neurol Int. 2016;7(Suppl 12):S307–S13.Google Scholar
Oi, S, Matsumoto, S. Pathophysiology of nonneoplastic obstruction of the foramen of Monro and progressive unilateral hydrocephalus. Neurosurgery. 1985;17(6):891–6.Google Scholar
Nishio, S, Morioka, T, Suzuki, S, Fukui, M. Tumours around the foramen of Monro: clinical and neuroimaging features and their differential diagnosis. J Clin Neurosci. 2002;9(2):137–41.Google Scholar
Kondziolka, D, Bilbao, JM. An immunohistochemical study of neuroepithelial (colloid) cysts. J Neurosurg. 1989;71(1):91–7.CrossRefGoogle ScholarPubMed
Lach, B, Scheithauer, BW. Colloid cyst of the third ventricle: a comparative ultrastructural study of neuraxis cysts and choroid plexus epithelium. Ultrastruct Pathol. 1992;16(3):331–49.Google Scholar
Uematsu, Y, Komai, N, Hirano, A, Shimizu, M, Tanaka, Y, Naka, D, et al. Cytokeratin immunohistochemical study of epithelial cysts in the central nervous system: with special reference to origins of colloid cyst of the third ventricle and Rathke’s cleft cyst in the sella. Noshuyo Byori. 1993;10(1):4352.Google Scholar
Durfee, SM, Kim, FM, Benson, CB. Postnatal outcome of fetuses with the prenatal diagnosis of asymmetric hydrocephalus. J Ultrasound Med. 2001;20(3):263–8.Google Scholar
Dott, NM. A case of left unilateral hydrocephalus in an infant. Operation—cure. Brain. 1927;50(3–4):548–61.Google Scholar
Emery, JL, Staschak, MC. The size and form of the cerebral aqueduct in children. Brain. 1972;95(3):591–8.Google Scholar
Cinalli, G, Spennato, P, Nastro, A, Aliberti, F, Trischitta, V, Ruggiero, C, et al. Hydrocephalus in aqueductal stenosis. Childs Nerv Syst. 2011;27(10):1621–42.Google Scholar
Jellinger, K, Schwingshackl, A. Birth injury of the spinal cord. Report of two necropsy cases with several weeks survival. Neuropaediatrie. 1973;4:111–23.Google Scholar
Russell, DS. Observations on the pathology of hydrocephalus. Med Res Council Special Report Ser. 1949;265:1138.Google Scholar
Jellinger, G. Anatomopathology of non-tumoral aqueductal stenosis. J Neurosurg Sci. 1986;30(1–2):116.Google Scholar
Parker, HL, Kernohan, JW. Stenosis of the aqueduct of Sylvius. Arch Neurol Psychiatr. 1933;29(3):538–60.CrossRefGoogle Scholar
Beckett, RS, Netsky, MG, Zimmerman, HM. Developmental stenosis of the aqueduct of Sylvius. Am J Pathol. 1950;26(5):755–87.Google Scholar
Turnbull, IM, Drake, CG. Membranous occlusion of the aqueduct of Sylvius. J Neurosurg. 1966;24(1):2434.CrossRefGoogle Scholar
Yamamoto, H, Maruo, T, Majima, T, Ishizaki, H, Tanaka-Okamoto, M, Miyoshi, J, et al. Genetic deletion of afadin causes hydrocephalus by destruction of adherens junctions in radial glial and ependymal cells in the midbrain. PLoS One. 2013;8(11):e80356.Google Scholar
Paez, P, Batiz, LF, Roales-Bujan, R, Rodriguez-Perez, LM, Rodriguez, S, Jimenez, AJ, et al. Patterned neuropathologic events occurring in hyh congenital hydrocephalic mutant mice. J Neuropathol Exp Neurol. 2007;66(12):1082–92.Google Scholar
Wagner, C, Batiz, LF, Rodriguez, S, Jimenez, AJ, Paez, P, Tome, M, et al. Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. J Neuropathol Exp Neurol. 2003;62(10):1019–40.Google Scholar
Ma, X, Bao, J, Adelstein, RS. Loss of cell adhesion causes hydrocephalus in nonmuscle myosin II-B-ablated and mutated mice. Mol Biol Cell. 2007;18(6):2305–12.CrossRefGoogle ScholarPubMed
Adle-Biassette, H, Saugier-Veber, P, Fallet-Bianco, C, Delezoide, AL, Razavi, F, Drouot, N, et al. Neuropathological review of 138 cases genetically tested for X-linked hydrocephalus: evidence for closely related clinical entities of unknown molecular bases. Acta Neuropathol. 2013;126(3):427–42.Google Scholar
Siyahhan, B, Knobloch, V, de Zelicourt, D, Asgari, M, Schmid Daners, M, Poulikakos, D, et al. Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles. J R Soc Interface. 2014;11(94):20131189.CrossRefGoogle ScholarPubMed
Lee, L. Riding the wave of ependymal cilia: Genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J Neurosci Res. 2013;91(9):1117–32.Google Scholar
Raimondi, AJ, Clark, SJ, McLone, DG. Pathogenesis of aqueductal occlusion in congenital murine hydrocephalus. J Neurosurg. 1976;45(1):6677.Google Scholar
Olbrich, H, Schmidts, M, Werner, C, Onoufriadis, A, Loges, NT, Raidt, J, et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Human Genet. 2012;91(4):672–84.Google Scholar
Vieira, JP, Lopes, P, Silva, R. Primary ciliary dyskinesia and hydrocephalus with aqueductal stenosis. J Child Neurol. 2012;27(7):938–41.Google Scholar
Greenstone, MA, Jones, RWA, Dewar, A, Neville, BGR, Cole, PJ. Hydrocephalus and primary ciliary dyskinesia. Arch Dis Child. 1984;59(5):481–2.Google Scholar
Kosaki, K, Ikeda, K, Miyakoshi, K, Ueno, M, Kosaki, R, Takahashi, D, et al. Absent inner dynein arms in a fetus with familial hydrocephalus-situs abnormality. Am J Med Genet. 2004;129A(3):308–11.Google Scholar
Milhorat, TH, Kotzen, RM, Anzil, AP. Stenosis of central canal of spinal cord in man: incidence and pathological findings in 232 autopsy cases. J Neurosurg. 1994;80(4):716–22.Google Scholar
Alvarez, LA, Kato, T, Llena, JF, Hirano, A. Ependymal foldings and other related ependymal structures in the cerebral aqueduct and fourth ventricle of man. Acta Anat (Basel). 1987;129(4):305–9.Google Scholar
Friede, RL. Surface structures of the aqueduct and the ventricular walls: a morphologic, comparative and histochemical study. J Comp Neurol. 1961;116:229–47.Google Scholar
Luteijn, JM, Brown, MJ, Dolk, H. Influenza and congenital anomalies: a systematic review and meta-analysis. Hum Reprod. 2014;29(4):809–23.Google Scholar
Rorke, LB. Pathology of Perinatal Brain Injury. New York: Raven Press; 1982. p. 146.Google Scholar
Gunn, TR, Mora, JD, Becroft, DM. Congenital hydrocephalus secondary to prenatal intracranial haemorrhage. Aust N Z J Obstet Gynaecol. 1988;28(3):197200.Google Scholar
Lategan, B, Chodirker, BN, Del Bigio, MR. Fetal hydrocephalus caused by cryptic intraventricular hemorrhage. Brain Pathol. 2010;20(2):391–8.CrossRefGoogle ScholarPubMed
Cavallo, C, Farago, G, Broggi, M, Ferroli, P, Acerbi, F. Developmental venous anomaly as a rare cause of obstructive hydrocephalus. J Neurosurg Sci. 2019;63(5):600–6.Google Scholar
Matsushima, T, Rhoton, AL, Lenkey, C. Microsurgery of the fourth ventricle: Part.1. Microsurgical anatomy. Neurosurgery. 1982;11(5):631–67.Google Scholar
Christian, EA, Jin, DL, Attenello, F, Wen, T, Cen, S, Mack, WJ, et al. Trends in hospitalization of preterm infants with intraventricular hemorrhage and hydrocephalus in the United States, 2000–2010. J Neurosurg Pediatr. 2016 17(3):260–9.Google Scholar
Dolecek, TA, Propp, JM, Stroup, NE, Kruchko, C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 2012;14 Suppl 5:149.Google Scholar
Louis, DN, Perry, A, Reifenberger, G, von Deimling, A, Figarella-Branger, D, Cavenee, WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.CrossRefGoogle ScholarPubMed
Johnson, KJ, Cullen, J, Barnholtz-Sloan, JS, Ostrom, QT, Langer, CE, Turner, MC, et al. Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer Epidemiol Biomarkers Prev. 2014;23(12):2716–36.Google Scholar
Starke, RM, Cappuzzo, JM, Erickson, NJ, Sherman, JH. Pineal cysts and other pineal region malignancies: determining factors predictive of hydrocephalus and malignancy. J Neurosurg. 2017 127(2):249–254.Google Scholar
Mottolese, C, Szathmari, A, Beuriat, PA. Incidence of pineal tumours. A review of the literature. Neurochirurgie. 2015;61(2–3):65–9.Google Scholar
Cesmebasi, A, Loukas, M, Hogan, E, Kralovic, S, Tubbs, RS, Cohen-Gadol, AA. The Chiari malformations: a review with emphasis on anatomical traits. Clinical Anatomy. 2015;28(2):184–94.Google Scholar
Caviness, VS. The Chiari malformations of the posterior fossa and their relation to hydrocephalus. Dev Med Child Neurol. 1976;18(1):103–16.Google Scholar
Bell, JE, Gordon, A, Maloney, AFJ. The association of hydrocephalus and Arnold-Chiari malformation with spina bifida in the fetus. Neuropathol Appl Neurobiol. 1980;6(1):2939.Google Scholar
Elgamal, EA. Natural history of hydrocephalus in children with spinal open neural tube defect. Surg Neurol Int. 2012;3:112.Google Scholar
Lichtenstein, BW. Distant neuroanatomic complications of spina bifida (spinal dysraphism): Hydrocephalus, Arnold-Chiari deformity, stenosis of the aqueduct of Sylvius, etc.; pathogenesis and pathology. Arch Neurol Psychiatr. 1942;47(2):195214.Google Scholar
Russell, DS, Donald, C. The mechanism of internal hydrocephalus in spina bifida. Brain. 1935;58:203–15.Google Scholar
Emery, JL, MacKenzie, N. Medullo-cervical dislocation deformity (Chiari II deformity) related to neurospinal dysraphism (meningomyelocele). Brain. 1973;96(1):155–62.Google Scholar
Emery, JL. Deformity of the aqueduct of Sylvius in children with hydrocephalus and myelomeningocele. Dev Med Child Neurol. 1974;16 Suppl 32(6):40–8.Google Scholar
Gilbert, JN, Jones, KL, Rorke, LB, Chernoff, GF, James, HE. Central nervous system anomalies associated with meningomyelocele, hydrocephalus, and the Arnold-Chiari malformation: reappraisal of theories regarding the pathogenesis of posterior neural tube closure defects. Neurosurgery. 1986;18(5):559–64.Google Scholar
MacFarlane, A, Maloney, AF. The appearance of the aqueduct and its relationship to hydrocephalus in the Arnold-Chiari malformation. Brain. 1957;80(4):479–91.Google Scholar
Masters, CL. Pathogenesis of the Arnold-Chiari malformation: the significance of hydrocephalus and aqueduct stenosis. J Neuropathol Exp Neurol. 1978;37(1):5674.Google Scholar
Tulipan, N, Wellons, JC, Thom, EA, Gupta, N, Sutton, LN, Burrows, PK, et al. Prenatal surgery for myelomeningocele and the need for cerebrospinal fluid shunt placement. J Neurosurg Pediatr. 2015;16(6):613–20.CrossRefGoogle ScholarPubMed
Sival, DA, Guerra, M, den Dunnen, WF, Batiz, LF, Alvial, G, Castaneyra-Perdomo, A, et al. Neuroependymal denudation is in progress in full-term human foetal spina bifida aperta. Brain Pathol. 2011;21(2):163–79.Google Scholar
Barr, ML. Observations on the foramen of Magendie in a series of human brains. Brain. 1948;71(3):281–9.Google Scholar
Spennato, P, Mirone, G, Nastro, A, Buonocore, MC, Ruggiero, C, Trischitta, V, et al. Hydrocephalus in Dandy-Walker malformation. Childs Nerv Syst. 2011;27(10):1665–81.Google Scholar
Taggart, JK, Walker, AE. Congenital atresia of the foramens of Luschka and Magendie. Arch Neuro Psychiatr. 1942;48(4):583612.Google Scholar
Hart, MN, Malamud, N, Ellis, WG. The Dandy-Walker syndrome. A clinicopathological study based on 28 cases. Neurology. 1972;22(8):771–80.Google Scholar
Logan, CV, Abdel-Hamed, Z, Johnson, CA. Molecular genetics and pathogenic mechanisms for the severe ciliopathies: insights into neurodevelopment and pathogenesis of neural tube defects. Mol Neurobiol. 2011;43(1):1226.Google Scholar
Cincinnati, P, Neri, ME, Valentini, A. Dandy-Walker anomaly in Meckel-Gruber syndrome. Clin Dysmorphol. 2000;9(1):35–8.Google Scholar
Ahdab-Barmada, M, Claassen, D. A distinctive triad of malformations of the central nervous system in the Meckel-Gruber syndrome. J Neuropath Exp Neurol. 1990;49(6):610–20.Google Scholar
Docherty, JG, Daly, JC, Carachi, R. Encephaloceles – a review 1971–1990. Eur J Pediatr Surg. 1991;1:11–3.Google Scholar
Caviness, VS, Evrard, P. Occipital encephalocele: a pathologic and anatomic analysis. Acta Neuropathol. 1975;32(3):245–55.Google Scholar
Karch, SB, Urich, H. Occipital encephalocele – morphological study. J Neurol Sci. 1972;15(1):89112.Google Scholar
Nauta, HJW, Dolan, E, Yasargil, MG. Microsurgical anatomy of spinal subarachnoid space. Surg Neurol. 1983;19(5):431–7.Google Scholar
Adeeb, N, Deep, A, Griessenauer, CJ, Mortazavi, MM, Watanabe, K, Loukas, M, et al. The intracranial arachnoid mater: a comprehensive review of its history, anatomy, imaging, and pathology. Childs Nerv Syst. 2013;29(1):1733.Google Scholar
Alcolado, R, Weller, RO, Parrish, EP, Garrod, D. The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol. 1988;14(1):117.Google Scholar
Kida, S, Yamashima, T, Kubota, T, Ito, H, Yamamoto, S. A light and electron microscopic and immunohistochemical study of human arachnoid villi. J Neurosurg. 1988;69:429–35.Google Scholar
Tubbs, RS, Hansasuta, A, Stetler, W, Kelly, DR, Blevins, D, Humphrey, R, et al. Human spinal arachnoid villi revisited: immunohistological study and review of the literature. J Neurosurg Spine. 2007;7(3):328–31.Google Scholar
Gomez, DG, DiBenedetto, AT, Pavese, AM, Firpo, A, Hershan, DB, Potts, DG. Development of arachnoid villi and granulations in man. Acta Anat (Basel). 1982;111(3):247–58.Google Scholar
Symss, NP, Oi, S. Theories of cerebrospinal fluid dynamics and hydrocephalus: historical trend. J Neurosurg Pediatr. 2013;11(2):170–7.Google Scholar
Bucchieri, F, Farina, F, Zummo, G, Cappello, F. Lymphatic vessels of the dura mater: a new discovery? J Anat. 2015;227(5):702–3.CrossRefGoogle ScholarPubMed
Squier, W, Lindberg, E, Mack, J, Darby, S. Demonstration of fluid channels in human dura and their relationship to age and intradural bleeding. Childs Nerv Syst. 2009;25(8):925–31.Google Scholar
Bakker, EN, Bacskai, BJ, Arbel-Ornath, M, Aldea, R, Bedussi, B, Morris, AW, et al. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol. 2016;36(2):181–94.Google Scholar
Chatterjee, S, Chatterjee, U. Overview of post-infective hydrocephalus. Childs Nerv Syst. 2011;27(10):1693–8.Google Scholar
Massicotte, EM, Del Bigio, MR. Human arachnoid villi response to subarachnoid hemorrhage: possible relationship to chronic hydrocephalus. J Neurosurg. 1999;91(1):80–4.Google Scholar
Gilles, FH, Davidson, RI. Communicating hydrocephalus associated with deficient dysplastic parasagittal arachnoidal granulations. J Neurosurg. 1971;35:421–6.Google Scholar
Gutierrez, Y, Friede, RL, Kaliney, WJ. Agenesis of arachnoid granulations and its relationship to communicating hydrocephalus. J Neurosurg. 1975;43(5):553–8.Google Scholar
Portnoy, HD, Branch, C, Castro, ME. The relationship of intracranial venous pressure to hydrocephalus. Childs Nerv Syst. 1994;10(1):2935.Google Scholar
Sainte-Rose, C, LaCombe, J, Pierre-Kahn, A, Reiner, D, Hirsch, JF. Intracranial venous sinus hypertension: cause or consequence of hydrocephalus in infants? J Neurosurg. 1984;60:727–36.CrossRefGoogle ScholarPubMed
Steinbok, P, Hall, J, Flodmark, O. Hydrocephalus in achondroplasia: the possible role of intracranial venous hypertension. J Neurosurg. 1989;71(1):42–8.Google Scholar
Taylor, WJ, Hayward, RD, Lasjaunias, P, Britto, JA, Thompson, DN, Jones, BM, et al. Enigma of raised intracranial pressure in patients with complex craniosynostosis: the role of abnormal intracranial venous drainage. J Neurosurg. 2001;94(3):377–85.CrossRefGoogle ScholarPubMed
McLaughlin, JF, Loeser, JD, Roberts, TS. Acquired hydrocephalus associated with superior vena cava syndrome in infants. Childs Nerv Syst. 1997;13:5963.Google Scholar
Rosman, NP, Shands, KN. Hydrocephalus caused by increased intracranial venous pressure: a clinicopathological study. Ann Neurol. 1978;3(5):445–50.Google Scholar
Del Bigio, MR. Neuropathological changes caused by hydrocephalus. Acta Neuropathol (Berl). 1993;85(6):573–85.Google Scholar
Del Bigio, MR. Ependymal reactions to injury. A review. J Neuropathol Exp Neurol. 1995;54(3):405–6.Google Scholar
Del Bigio, MR. Future directions for therapy of childhood hydrocephalus: a view from the laboratory. Pediatr Neurosurg. 2001;34(4):172–81.Google Scholar
Del Bigio, MR. Pathophysiologic consequences of hydrocephalus. Neurosurg Clin N Am. 2001;12(4):639–49.Google Scholar
Del Bigio, MR. Neuropathology and structural changes in hydrocephalus. Dev Disabil Res Rev. 2010;16(1):1622.Google Scholar
Del Bigio, MR. Neuropathology of human hydrocephalus. In: Rigamonti, D, editor. Adult Hydrocephalus. Cambridge: Cambridge University Press; 2014. pp. 1427.Google Scholar
Del Bigio, MR. Cellular damage and prevention in childhood hydrocephalus. Brain Pathol. 2004;14(3):317–24.Google Scholar
Del Bigio, MR, Khan, OH, da Silva Lopes, L, Juliet, PA. Cerebral white matter oxidation and nitrosylation in young rodents with kaolin-induced hydrocephalus. J Neuropathol Exp Neurol. 2012;71(4):274–88.Google Scholar
Miyan, JA, Nabiyouni, M, Zendah, M. Development of the brain: a vital role for cerebrospinal fluid. Can J Physiol Pharmacol. 2003;81(4):317–28.Google Scholar
Di Curzio, DL, Buist, RJ, Del Bigio, MR. Reduced subventricular zone proliferation and white matter damage in juvenile ferrets with kaolin-induced hydrocephalus. Exp Neurol. 2013;248:112–28.Google Scholar
Del Bigio, MR. Glial linings of the brain. In: Walz, W, editor. The Neuronal Environment: Brain Homeostasis in Health and Disease. Totowa: Humana Press Inc.; 2002. pp. 341–75.Google Scholar
Wilkins, RH, Odom, GL. Ependymal-choroidal cells in cerebrospinal fluid. Increased incidence in hydrocephalic infants. J Neurosurg. 1974;41(5):555–60.Google Scholar
Gadsdon, DR, Variend, S, Emery, JL. The effect of hydrocephalus upon the myelination of the corpus callosum. Z Kinderchir. 1978;25:311–9.Google Scholar
Del Bigio, MR, Wilson, MJ, Enno, T. Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol. 2003;53(3):337–46.Google Scholar
Hanlo, PW, Gooskens, RJHM, Vanschooneveld, M, Tulleken, CAF, Vanderknaap, MS, Faber, JAJ, et al. The effect of intracranial pressure on myelination and the relationship with neurodevelopment in infantile hydrocephalus. Dev Med Child Neurol. 1997;39(5):286–91.Google Scholar
Williams, VJ, Juranek, J, Stuebing, KK, Cirino, PT, Dennis, M, Bowman, RM, et al. Postshunt lateral ventricular volume, white matter integrity, and intellectual outcomes in spina bifida and hydrocephalus. J Neurosurg Pediatr. 2015 15(4):410–9.Google Scholar
Humphreys, P, Muzumdar, DP, Sly, LE, Michaud, J. Focal cerebral mantle disruption in fetal hydrocephalus. Pediatr Neurol. 2007;36(4):236–43.Google Scholar
Torkildsen, A. Spontaneous rupture of the cerebral ventricles. J Neurosurg. 1948;5(4):327–39.Google Scholar
Limbrick, DD, Jr., Baird, LC, Klimo, P, Jr., Riva-Cambrin, J, Flannery, AM, Pediatric Hydrocephalus Systematic R, et al. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 4: Cerebrospinal fluid shunt or endoscopic third ventriculostomy for the treatment of hydrocephalus in children. J Neurosurg Pediatr. 2014;14 Suppl 1:30–4.Google Scholar
Eid, S, Iwanaga, J, Oskouian, RJ, Loukas, M, Oakes, WJ, Tubbs, RS. Ventriculosubgaleal shunting – a comprehensive review and over two-decade surgical experience. Childs Nerv Syst. 2018;34(11):1639–42.Google Scholar
Del Bigio, MR. Biological reactions to cerebrospinal fluid shunt devices: a review of the cellular pathology. Neurosurgery. 1998;42(2):319–25.Google Scholar
Harris, CA, McAllister, JP, 2nd. What we should know about the cellular and tissue response causing catheter obstruction in the treatment of hydrocephalus. Neurosurgery. 2012;70(6):1589–601.Google Scholar
Ellis, MJ, Kazina, CJ, Del Bigio, MR, McDonald, PJ. Treatment of recurrent ventriculoperitoneal shunt failure associated with persistent cerebrospinal fluid eosinophilia and latex allergy by use of an “extracted” shunt. J Neurosurg Pediatr. 2008;1(3):237–9.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×