Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-01T04:23:31.698Z Has data issue: false hasContentIssue false

Genetic Syndromes and Phakomatoses

from Section 5 - Malformations

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Saldarriaga, W, Tassone, F, Gonzalez-Teshima, L, Forero-Forero, J, Ayala-Zapata, S, Hagerman, RJ. Fragile X syndrome. Colomb Med (Cali) 2014;45:190–8.Google Scholar
Bagni, C, Tassone, F, Neri, G, Hagerman, RJ. Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J Clin Invest 2012;122:4314–22.Google Scholar
Hagerman, RJ, Hagerman, PJ. Fragile X-associated tremor/ataxia syndrome – features, mechanisms and management. Nat Rev Neurol 2016;12:403–12.Google Scholar
Coffey, S, Cook, K, Tartaglia, N, Tassone, F, Nguyen, DV, Pan, R, et al. Expanded clinical phenotype of women with the FMR1 premutation. Am J Med Genet A 2008;146A:1009–16.Google Scholar
Hunter, J, Rivero-Arias, O, Angelov, A, Kim, E, Fotheringham, I, Leal, J. Epidemiology of fragile X syndrome: A systematic review and meta-analysis. Am J Med Genet A 2014;164(7):1648–58.Google Scholar
Devys, D, Lutz, Y, Rouyer, N, Bellocq, J-P, Mandel, J-L. The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat Genet 1993;4(4):335–40.CrossRefGoogle ScholarPubMed
Lozano, R, Rosero, CA, Hagerman, RJ. Fragile X spectrum disorders. Intractable Rare Dis Res 2014;3(4):134–46.Google Scholar
Hagerman, RJ, Berry-Kravis, E, Hazlett, HC, Bailey, DB, Moine, H, Kooy, RF, et al. Fragile X syndrome. Nat Rev Dis Primers 2017;3:17065.Google Scholar
Bailey, DB, Raspa, M, Bishop, E, Holiday, D. No change in the age of diagnosis for fragile X syndrome: findings from a national parent survey. Pediatrics 2009;124(2):527–33.CrossRefGoogle ScholarPubMed
Antar, LN, Dictenberg, JB, Plociniak, M, Afroz, R, Bassell, GJ. Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Genes Brain Behav 2005;4(6):350–9.Google Scholar
Bailey, DB, Raspa, M, Holiday, D, Bishop, E, Olmsted, M. Functional skills of individuals with fragile X syndrome: A lifespan cross-sectional analysis. Am J Intellect Dev Disabil 2009;114(4):289303.Google Scholar
Hagerman, PJ, Stafstrom, CE. Origins of epilepsy in fragile X syndrome. Epilepsy Curr 2009;9(4):108–12.Google Scholar
Hatton, DD, Wheeler, A, Sideris, J, Sullivan, K, Reichardt, A, Roberts, J, et al. Developmental trajectories of young girls with Fragile X Syndrome. Am J Intellect Dev Disabil 2009;114(3):161–71.Google Scholar
Greco, CM, Berman, RF, Martin, RM, Tassone, F, Schwartz, PH, Chang, A, et al. Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain 2006;129(1):243–55.Google Scholar
Martínez-Cerdeño, V, Lechpammer, M, Lott, A, Schneider, A, Hagerman, RJ. Fragile X-associated tremor/ataxia syndrome in a man in his 30’s. JAMA Neurol 2015;72:1070–3.Google Scholar
Hagerman, RJ, Leehey, M, Heinrichs, W, Tassone, F, Wilson, R, Hills, J, et al. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 2001;57:127–30.Google Scholar
Lechpammer, M, Martínez Cerdeńo, V, Hunsaker, MR, Hah, M, Gonzales, H, Tisch, S, Joffe, R, Pamphlett, R, Tassone, F, Hagerman, PJ, Bolitho, SJ, Hagerman, RJ. Concomitant occurrence of FXTAS and clinically defined sporadic inclusion body myositis: report of two cases. Croat Med J 2017;58(4):310–15.CrossRefGoogle ScholarPubMed
Brunberg, JA, Jacquemont, S, Hagerman, RJ, Berry-Kravis, EM, Grigsby, J, Leehey, MA, et al. Fragile X premutation carriers: characteristic MRI findings of adult male patients with progressive cerebellar and cognitive dysfunction. Am J Neuroradiol 2002;23(10):1757–66.Google Scholar
Hallahan, BP, Craig, MC, Toal, F, Daly, EM, Moore, CJ, Ambikapathy, A, Robertson, D, Murphy, KC, Murphy, DG. In vivo brain anatomy of adult males with Fragile X syndrome: an MRI study. Neuroimage 2011;54(1):1624.Google Scholar
Wang, JY, Hessl, D, Hagerman, RJ, Simon, TJ, Tassone, F, Ferrer, E, et al. Abnormal trajectories in cerebellum and brainstem volumes in carriers of the fragile X premutation. Neurobiol Aging 2017;55:1119.Google Scholar
Bruno, J, Shelly, E, Quintin, E-M, Rostami, M, Patnaik, S, Spielman, D, et al. Aberrant basal ganglia metabolism in fragile X syndrome: a magnetic resonance spectroscopy study. J Neurodev Disord 2013;5(1):20.CrossRefGoogle ScholarPubMed
Sherman, S, Pletcher, BA, Driscoll, DA. Fragile X syndrome: diagnostic and carrier testing. Genet Med 2005;7(8):584–7.Google Scholar
LaFauci, G, Adayev, T, Kascsak, R, Brown, WT. Detection and quantification of the fragile X mental retardation protein 1 (FMRP). Genes (Basel) 2016;7(12):pii:E121.Google Scholar
Greco, CM, Hagerman, RJ, Tassone, F, Chudley, AE, Del Bigio, MR, Jacquemont, S, et al. Neuronal intranuclear inclusions in a new cerebellar tremor/ataxia syndrome among fragile X carriers. Brain 2002;125(8):1760–71.Google Scholar
Salcedo-Arellano, MJ, Hagerman, RJ, Martínez-Cerdeño, V. Síndrome de temblor y ataxia asociado al X frágil: presentación clínica, patología y tratamiento. Rev Neurol 2019;68(5):199206.Google Scholar
Ariza, J, Rogers, H, Hartvigsen, A, Snell, M, Dill, M, Judd, D, Hagerman, P, Martínez-Cerdeño, V. Iron accumulation and dysregulation in the putamen in fragile X-associated tremor/ataxia syndrome. Mov Disord 2017;32(4):585–91.Google Scholar
Martínez Cerdeño, V, Hong, T, Amina, S, Lechpammer, M, Ariza, J, Tassone, F, Noctor, SC, Hagerman, P, Hagerman, R. Microglial cell activation and senescence are characteristic of the pathology FXTAS. Mov Disord 2018;33(12):1887–94.Google Scholar
Hayward, BE, Kumari, D, Usdin, K. Recent advances in assays for the fragile X-related disorders. Hum Genet 2017;136(10):1313–27.Google Scholar
Martínez-Cerdeño, V, Lechpammer, M, Noctor, S, Ariza, J, Hagerman, P, Hagerman, R. FMR1 premutation with Prader-Willi phenotype and fragile X-associated tremor/ataxia syndrome. Clin Case Rep 2017;5:625–9.Google Scholar
Jalnapurkar, I, Cochran, DM, Frazier, JA. New therapeutic options for fragile X syndrome. Curr Treat Options Neurol 2019;21(3):12.Google Scholar

References

Hickey, F, Hickey, E, Summar, KL. Medical update for children with Down syndrome for the pediatrician and family practitioner. Adv Pediatr. 2012;59(1):137–57.Google Scholar
Ergaz-Shaltiel, Z, Engel, O, Erlichman, I, Naveh, Y, Schimmel, MS, Tenenbaum, A. Neonatal characteristics and perinatal complications in neonates with Down syndrome. Am J Med Gene. 2017;173(5):1279–86.Google Scholar
ACOG Practice Bulletin No. 88. Invasive prenatal testing for aneuploidy. Obstet Gynecol. 2007;110(6):1459–67.Google Scholar
Agarwal Gupta, N, Kabra, M. Diagnosis and management of Down syndrome. Indian J Pediatr. 2014;81(6):560–7.Google Scholar
Ostermaier, KK. Down syndrome: Clinical features and diagnosis. UpToDate. 2018 Available from: www.uptodate.com/contents/down-syndrome-clinical-features-and-diagnosis.Google Scholar
Bull, MJ, Committee on genetics. Health supervision for children with Down syndrome. Pediatrics. 2011;128(2):393406.Google Scholar
Myers, BA, Pueschel, SM. Psychiatric disorders in persons with Down syndrome. J Nerv Ment Dis. 1991;179(10):609–13.Google Scholar
Kent, L, Evans, J, Paul, M, Sharp, M. Comorbidity of autistic spectrum disorders in children with Down syndrome. Dev Med Child Neurol. 1999;41(3):153–8.Google Scholar
Lai, F, Williams, RS. A prospective study of Alzheimer disease in Down syndrome. Arch Neurol. 1989;46(8):849–53.Google Scholar
Visser, FE, Aldenkamp, AP, van Huffelen, AC, Kuilman, M, Overweg, J, van Wijk, J. Prospective study of the prevalence of Alzheimer-type dementia in institutionalized individuals with Down syndrome. Am J Ment Retard. 1997;101(4):400–12.Google Scholar
Geggel, RL, O’Brien, JE, Feingold, M. Development of valve dysfunction in adolescents and young adults with Down syndrome and no known congenital heart disease. J Pediatr. 1993;122:821–3.CrossRefGoogle Scholar
Hamada, T, Gejyo, F, Koshino, Y, Murata, T, Omori, M, Nishio, M, et al. Echocardiographic evaluation of cardiac valvular abnormalities in adults with Down’s syndrome. Tohoku J Exp Med. 1998;185(1):31–5.Google Scholar
Bush, D, Galambos, C, Ivy, DD, Abman, SH, Wolter-Warmerdam, K, Hickey, F. Clinical characteristics and risk factors for developing pulmonary hypertension in children with Down syndrome. J Pediatr. 2018;202:212–19.Google Scholar
Thomas, K, Bourke, J, Girdler, S, Bebbington, A, Jacoby, P, Leonard, H. Variation over time in medical conditions and health service utilization of children with Down syndrome. J Pediatr. 2011;158(2):194–200.e1.Google Scholar
McDowell, KM, Craven, DI. Pulmonary complications of Down syndrome during childhood. J Pediatr. 2011;158(2):319–25.Google Scholar
Roizen, NJ, Mets, MB, Blondis, TA. Ophthalmic disorders in children with Down syndrome. Dev Med Child Neurol. 1994;36(7):594600.Google Scholar
Tedeschi, AS, Roizen, NJ, Taylor, HG, Murray, G, Curtis, CA, Parikh, AS. The prevalence of congenital hearing loss in neonates with Down syndrome. J Pediatr. 2015;166(1):168–71.Google Scholar
Shott, SR, Joseph, A, Heithaus, D. Hearing loss in children with Down syndrome. Int J Pediatr Otorhinolaryngol. 2001;61(3):199205.Google Scholar
Tüysüz, B, Beker, DB. Thyroid dysfunction in children with Down’s syndrome. Acta Paediatr. 2001;90(12):1389–93.Google Scholar
Van Goor, JC, Massa, GG, Hirasing, R. Increased incidence and prevalence of diabetes mellitus in Down’s syndrome. Arch Dis Child. 1997;77(2):186.Google Scholar
Fabia, J, Drolette, M. Malformations and leukemia in children with Down’s syndrome. Pediatrics. 1970;45(1):6070.Google Scholar
Mercer, ES, Broecker, B, Smith, EA, Kirsch, AJ, Scherz, HC, Massad C.Urological manifestations of Down syndrome. J Urol. 2004;171(3):1250–53.Google Scholar
Pinter, JD, Eliez, S, Schmitt, JE, Capone, GT, Reiss, AL. Neuroanatomy of Down’s syndrome: a high-resolution MRI study. Am J Psychiatry. 2001;158(10):1659–65.Google Scholar
Fujii, Y, Aida, N, Niwa, T, Enokizono, M, Nozawa, K, Inoue, T. A small pons as a characteristic finding in Down syndrome: a quantitative MRI study. Brain Dev. 2017;39(4):298305.Google Scholar
Ieshima, A, Kisa, T, Yoshino, K, Takashima, S, Takeshita, K. A morphometric CT study of Down’s syndrome showing small posterior fossa and calcification of basal ganglia. Neuroradiology. 1984;26(6):493–8.Google Scholar
Blaser, S, Propst, EJ, Martin, D, Feigenbaum, A, James, AL, Shannon, P, et al. Inner ear dysplasia is common in children with Down syndrome (trisomy 21). Laryngoscope. 2006;116(12):2113–19.Google Scholar
Hobson-Rohrer, WL, Samson-Fang, L. Down syndrome. Pediatr Rev. 2013;34(12):573–4.Google Scholar
Spencer, K, Souter, V, Tul, N, Snijders, R, Nicolaides, KH. A screening program for trisomy 21 at 10–14 weeks using fetal nuchal translucency, maternal serum free β-human chorionic gonadotropin and pregnancy-associated plasma protein-A: First-trimester screening for Down’s syndrome. Ultrasound Obstet and Gynecol. 1999;13(4):231–7.Google Scholar
Wisniewski, KE. Down syndrome children often have brain with maturation delay, retardation of growth, and cortical dysgenesis. Am J Med Genet Suppl. 1990;7:274–81.Google Scholar
Wisniewski, KE, Schmidt-Sidor, B. Postnatal delay of myelin formation in brains from Down syndrome infants and children. Clin Neuropathol. 1989;8(2):5562.Google Scholar
Yarom, R, Sagher, U, Havivi, Y, Peled, IJ, Wexler, MR. Myofibers in tongues of Down’s syndrome. J Neuro Sci. 1986;73(3):279–87.CrossRefGoogle ScholarPubMed
Godridge, H, Reynolds, GP, Czudek, C, Calcutt, NA, Benton, M. Alzheimer-like neurotransmitter deficits in adult Down’s syndrome brain tissue. J Neurol Neurosurg Psychiatry. 1987;50(6):775–8.Google Scholar
Inagaki, T, Morita, N, Cureoglu, S, Schachern, PA, Nomiya, S, Nomiya, R, et al. Peripheral vestibular system in Down syndrome: quantitative assessment of vestibular histopathology. Otolaryngol Head Neck Surg. 2011;144(2):280–3.Google Scholar
Abbott, M-A, Benn, P. Prenatal genetic diagnosis of Down’s syndrome. Expert Rev Mol Diagn. 2002;2(6):605–15.Google Scholar
Presson, AP, Partyka, G, Jensen, KM, Devine, OJ, Rasmussen, SA, McCabe, LL, et al. Current estimate of Down syndrome population prevalence in the United States. Journal Pediatr. 2013;163(4):1163–8.Google Scholar

References

Richmond, C. John Hilton Edwards. BMJ. 2007;335(7632):1269.Google Scholar
Mudaliyar, US, Mudaliyar, SU. Strawberry skull in Edwards’ syndrome. BJR Case Rep. 2017;3(4):20170045.Google Scholar
Weber, WW. Survival and the sex ratio in trisomy 17–18. Am J Hum Genet. 1967; 19 (3 Pt 2): 369–77.Google Scholar
Savva, GM, Walker, K, Morris, JK. The maternal age-specific live birth prevalence of trisomies 13 and 18 compared to trisomy 21 (Down syndrome). Prenat Diagn. 2010;30(1):5764.Google Scholar
Cereda, A, Carey, JC. The trisomy 18 syndrome. Orphanet J Rare Dis. 2012;7:81.Google Scholar
Carey, JC, Kosho, T. Perspectives on the care and advances in the management of children with trisomy 13 and 18. Am J Med Genet C Semin Med Genet. 2016;172(3):249–50.Google Scholar
Epelman, M, Daneman, A, Blaser, SI, Ortiz-Neira, C, Konen, O, Jarrín, J, et al. Differential diagnosis of intracranial cystic lesions at head US: correlation with CT and MR imaging. Radiographics. 2006;26(1):173–96.Google Scholar
Ostlere, SJ, Irving, HC, Lilford, RJ. Fetal choroid plexus cysts: a report of 100 cases. Radiology. 1990;175(3):753–5.Google Scholar
Kinoshita, M, Nakamura, Y, Nakano, R, Morimatsu, M, Fukuda, S, Nishimi, Y, Hashimoto, T. Thirty-one autopsy cases of trisomy 18: clinical features and pathological findings. Pediatr Pathol. 1989;9(4):445–57.Google Scholar
Irving, C, Richmond, S, Wren, C, Longster, C, Embleton, ND. Changes in fetal prevalence and outcome for trisomies 13 and 18: a population-based study over 23 years. J Matern Fetal Neonatal Med. 2011;24(1):137–41.Google Scholar
Breathnach, FM, Malone, FD, Lambert-Messerlian, G, Cuckle, HS, Porter, TF, Nyberg, DA, et al. First- and second-trimester screening: detection of aneuploidies other than Down syndrome. Obstet Gynecol. 2007;110(3):651–7.Google Scholar
Staples, AJ, Robertson, EF, Ranieri, E, Ryall, RG, Haan, EA. A maternal serum screen for trisomy 18: an extension of maternal serum screening for Down syndrome. Am J Hum Genet. 1991;49(5):1025–33.Google Scholar
Sumi, SM. Brain malformations in the trisomy 18 syndrome. Brain. 1970;93(4):821–30.Google Scholar
Miyata, H, Miyata, M, Ohama, E. Pyramidal tract abnormalities in the human fetus and infant with trisomy 18 syndrome. Neuropathology. 2014;34(3):219–26.Google Scholar
Taylor-Phillips, S, Freeman, K, Geppert, J, Agbebiyi, A, Uthman, OA, Madan, J, et al. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis. BMJ Open. 2016;6(1):e010002.Google Scholar
Andrews, SE, Downey, AG, Showalter, DS, Fitzgerald, H, Showalter, VP, Carey, JC, Hulac, P. Shared decision making and the pathways approach in the prenatal and postnatal management of the trisomy 13 and trisomy 18 syndromes. Am J Med Genet C Semin Med Genet. 2016;172(3):257–63.Google Scholar
Yamagishi, H. Cardiovascular surgery for congenital heart disease associated with trisomy 18. Gen Thorac Cardiovasc Surg. 2010;58(5):217–19.Google Scholar

References

Levy, PA, Marion, R. Trisomies. Pediatr Rev. 2018;39(2):104–6.Google Scholar
Patau, K, Smith, DW, Therman, E, Inhorn, SL, Wagner, HP. Multiple congenital anomaly caused by an extra autosome. Lancet. 1960;1(7128):790–3.Google Scholar
Hook, EB. Rates of 47, + 13 and 46 translocation D/13 Patau syndrome in live births and comparison with rates in fetal deaths and at amniocentesis. Am J Hum Genet. 1980;32(6):849–58.Google Scholar
Huether, CA, Martin, RLM, Stoppelman, SM, D’Souza, S, Bishop, JK, Torfs, CP, et al. Sex ratios in fetuses and liveborn infants with autosomal aneuploidy. Am J Med Genet. 1996;63(3):492500.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Petry, P, Polli, JB, Mattos, VF, Rosa, RC, Zen, PR, Graziadio, C, Paskulin, GA, Rosa, RF. Clinical features and prognosis of a sample of patients with trisomy 13 (Patau syndrome) from Brazil. Am J Med Genet A. 2013;161A(6):1278–83.Google Scholar
Goff, RD, Soares, BP. Neuroradiological findings of trisomy 13 in a rare long-term survivor. Neuroradiol J. 2018;31(4):412–14.Google Scholar
Ong, S, Tonks, A, Woodward, ER, Wyldes, MP, Kilby, MD. An epidemiological study of holoprosencephaly from a regional congenital anomaly register: 1995–2004. Prenat Diagn. 2007;27(4):340–7Google Scholar
Bindra, R, Heath, V, Liao, A, Spencer, K, Nicolaides, KH. One-stop clinic for assessment of risk for trisomy 21 at 11–14 weeks: a prospective study of 15,030 pregnancies. Ultrasound Obstet Gynecol. 2002;20(3):219–25.Google Scholar
Shiefa, S, Amargandhi, M, Bhupendra, J, Moulali, S, Kristine, T. First trimester maternal serum screening using biochemical markers PAPP-A and free β-hCG for Down syndrome, Patau syndrome and Edward syndrome. Indian J Clin Biochem. 2013;28(1):312.Google Scholar
Watson, WJ, Miller, RC, Wax, JR, Hansen, WF, Yamamura, Y, Polzin, WJ. Sonographic detection of trisomy 13 in the first and second trimesters of pregnancy. J Ultrasound Med. 2007;26(9):1209–14.Google Scholar
Springett, A, Wellesley, D, Greenlees, R, Loane, M, Addor, MC, Arriola, L, et al. Congenital anomalies associated with trisomy 18 or trisomy 13: A registry-based study in 16 European countries, 2000–2011. Am J Med Genet A. 2015;167A(12):3062–9.Google Scholar
Gomi, K, Sato, Y, Tanaka, M, Ijiri, R, Kato, K, Aoki, I, et al. Specificity of splenopancreatic field abnormality in trisomy 13 syndrome: macroscopic and histological analysis in 21 autopsy cases. Pathol Int. 2009;59(3):147–51.Google Scholar
Taylor-Phillips, S, Freeman, K, Geppert, J, Agbebiyi, A, Uthman, OA, Madan, J, et al. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis. BMJ Open. 2016;6(1):e010002.CrossRefGoogle ScholarPubMed
Meyer, RE, Liu, G, Gilboa, SM, Ethen, MK, Aylsworth, AS, Powell, CM, et al. Survival of children with trisomy 13 and trisomy 18: a multi-state population-based study. Am J Med Genet A. 2016;170A(4):825–37.Google Scholar
Andrews, SE, Downey, AG, Showalter, DS, Fitzgerald, H, Showalter, VP, Carey, JC, Hulac, P. Shared decision making and the pathways approach in the prenatal and postnatal management of the trisomy 13 and trisomy 18 syndromes. Am J Med Genet C Semin Med Genet. 2016;172(3):257–63.Google Scholar

References

von Recklinghausen, F. Die Lymphelfasse und ihre Beziehung zum Bindegewebe. Berlin: A. Hirschwald; 1862.Google Scholar
Hong, C-H, Tu, H-P, Lin, J-R, Lee, C-H. An estimation of the incidence of tuberous sclerosis complex in a nationwide retrospective cohort study (1997–2010). Br J Dermatol. 2016;174(6):1282–9.Google Scholar
Lam, H, Nijmeh, J, Henske, E. New developments in the genetics and pathogenesis of tumours in tuberous sclerosis complex. J Pathol. 2017;241(2):219–25.Google Scholar
Li, J, Kim, S, Blenis, J. Rapamycin: one drug, many effects. Cell Metabolism. 2014;19(3):373379.Google Scholar
Northrup, H, Krueger, D. The International Tuberous Sclerosis Complex Consensus Group. Tuberous Sclerosis Complex Diagnostic Criteria Update: Recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013; 49:243–54.Google Scholar
Krueger, D, Northrup, H, Northrup, H, Krueger, D, Roberds, S, Smith, K et al. Tuberous Sclerosis Complex Surveillance and Management: Recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49(4):255–65.Google Scholar
Kalantari, BN, Salamon, N. Neuroimaging of tuberous sclerosis: spectrum of pathologic findings and frontiers in imaging. JR Am J Roentgenol. 2008;190(5):W304–9.Google Scholar
Sharp, D, Robertson, DM. Tuberous sclerosis in an infant of 28 weeks gestational age. Can J Neurol Sci. 1983;10:5962.Google Scholar
Harding, BN, Golden, JA. Malformations. In: Love, S, Budka, H, Ironside, JW, Perry, A. (Eds.) Greenfield’s Neuropathology. 9th ed. Boca Raton: Taylor & Francis; 2015.Google Scholar
Hirano, A, Tuazon, R, Zimmerman, HM. Neurofibrillary changes, granulovacuolar bodies and argentophilic globules observed in tuberous sclerosis. Acta Neuropathol (Berl). 1968;11:257–61.Google Scholar
Hsieh, DT, Whiteway, SL, Rohena, LO, Thiele, EA. Tuberous sclerosis complex: five new things. Neurol Clin Pract. 2016;6(4):339–47.Google Scholar
de Vries, PJ, Whittemore, VH, Leclezio, L, et al. Tuberous sclerosis associated neuropsychiatric disorders (TAND) and the TAND checklist. Pediatr Neurol 2015;52:2535.Google Scholar

References

Patterson, M, Levy, M, Dashe, J. Sturge-Weber syndrome [Internet]. Uptodate.com; 2019 [cited 20 Nov 2018]. Available from: www.uptodate.com/contents/sturge-weber-syndrome.Google Scholar
Comi, A. Current therapeutic options in Sturge-Weber syndrome. Semin Pediatr Neurol. 2015;22(4):295301.Google Scholar
Islam, MP, Roach, ES. Handbook of clinical neurology: neurocutaneous syndromes. Elsevier; 2015;132:2330.Google Scholar
Shirley, MD, Tang, H, Gallione, CJ, Baugher, JD, Frelin, LP, Cohen, BA et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med. 2013;368(21):1971–79.Google Scholar
Comi, A. Presentation, diagnosis, pathophysiology, and treatment of the neurological features of Sturge-Weber syndrome. Neurologist; 2011;17(4):179–84.Google Scholar
Pinto, A, Chen, L, Friedman, R, Grant, P, Poduri, A, Takeoka, M et al. Sturge-Weber syndrome: brain magnetic resonance imaging and neuropathology findings. Pediatr Neurol. 2016;58:2530.Google Scholar
Zallmann, M, Leventer, R, Mackay, M, Ditchfield, M, Bekhor, P, Su, J. Screening for Sturge-Weber syndrome: a state-of-the-art review. Pediatr Dermatol. 2017;35(1):3042.Google Scholar
Blumcke, I, Thom, M, Aronica, E, Armstrong, DD, Vinters, HV, Palmini, A, et al. The clinicopathologic spectrum of focal cortical dysplasias: A consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia. 2011;52:158–74.Google Scholar
Comi, A, Sahin, M, Hammill, A, Kaplan, EH, Juhasz, C, North, P., et al. Leveraging a Sturge-Weber gene discovery: An agenda for future research. Pediatr Neurol. 2016;58:1224.Google Scholar
De la Torre, A, Luat, A, Juhász, C, Ho, M, Argersinger, D, Cavuoto, K et al. A multidisciplinary consensus for clinical care and research needs for Sturge-Weber syndrome. Pediatr Neurol. 2018;84:1120.Google Scholar

References

Kadonaga, J, Frieden, I. Neurocutaneous melanosis: definition and review of the literature. J Amer Acad Dermatol. 1991;24(5):747–55.Google Scholar
Etchevers, H. Neurocutaneous melanocytosis. [Internet]. Orphanet encyclopedia; 2012 Feb. Available from: www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=en&Expert=2481.Google Scholar
Thomas, S., Patel, B., Varghese, S. and Backianathan, S. Neurocutaneous melanosis with leptomeningeal melanoma involving supratentorium and infratentorium. Cureus. 2018;10(9):16.Google Scholar
Chen, L, Zhai, L, Al-Kzayer, LFY, Sarsam, SN, Liu, T, Alzakar, RH et al. Neurocutaneous melanosis in association with large congenital melanocytic nevi in children: a report of 2 cases with clinical, radiological, and pathogenetic evaluation. Front Neurol. 2019;10(79):16.Google Scholar
Islam, MP, Roach, ES. Handbook of Clinical Neurology. Neurocutaneous Syndromes. Elsevier; 2015;132:2330.Google Scholar
Jakchairoongruang, K, Khakoo, Y, Beckwith, M, Barkovich, A. New insights into neurocutaneous melanosis. Pediatr Radiol. 2018;48(12):1786–96.Google Scholar
Ruggieri, M, Praticò, A. Mosaic neurocutaneous disorders and their causes. Semin Pediatr Neur. 2015;22(4):207–33.Google Scholar
Belysheva, T, Vishnevskaya, Y, Nasedkina, T, Emelyanova, M, Abramov, I, Orlova, K et al. Melanoma arising in a giant congenital melanocytic nevus: two case reports. Diagn Pathol. 2019;14(1):19.Google Scholar
Küsters-Vandevelde, H, Küsters, B, van Engen-van Grunsven, A, Groenen, P, Wesseling, P, Blokx, W. Primary melanocytic tumors of the central nervous system: a review with focus on molecular aspects. Brain Pathol. 2015;25(2):209–26.Google Scholar
Basu, D, Salgado, C, Bauer, B, Khakoo, Y, Patel, J, Hoehl, R et al. The dual PI3K/mTOR inhibitor omipalisib/GSK2126458 inhibits clonogenic growth in oncogenically-transformed cells from neurocutaneous melanocytosis. Cancer Genomics Proteomics. 2018;15(4):239–48.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×