We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study introduces a low-profile, broadband antenna with filtering features and tunable radiation nulls. The antenna consists of an arc-shaped slot, a sawtooth square slot, a Y-shaped filtering branch, two rectangular metal cavities, and curved current loops. High-frequency current balancing technology is used in this research, two rectangular metal cavities are added above the slot to balance the current strength and reduce cross-polarization. By introducing a Y-shaped filtering branch based on the reverse diversion technique, the filtering capability of the antenna can be significantly enhanced. The electric and magnetic field intensity in the specific area is enhanced through arc-shaped slot tuning technology, and the bandwidth is effectively broadened. The radius adjustment of the sector-shaped feeding network controls the position of the high-frequency radiation null, and the curved current loops control the low-frequency radiation null, the two modulate to regulate the roll-off rate of the radiation characteristic. Experimental tests demonstrate an impedance matching bandwidth greater than 55%, a peak gain of 4.5 dBi, and out-of-band suppression of 25 and 21 dB in the low and high-frequency bands, respectively. Moreover, the cross-polarization level obtained in the xoz plane is lower than –35 dB. The designed antenna demonstrates considerable potential for broadband filtering applications.
The emotion regulation network (ERN) in the brain provides a framework for understanding the neuropathology of affective disorders. Although previous neuroimaging studies have investigated the neurobiological correlates of the ERN in major depressive disorder (MDD), whether patients with MDD exhibit abnormal functional connectivity (FC) patterns in the ERN and whether the abnormal FC in the ERN can serve as a therapeutic response signature remain unclear.
Methods
A large functional magnetic resonance imaging dataset comprising 709 patients with MDD and 725 healthy controls (HCs) recruited across five sites was analyzed. Using a seed-based FC approach, we first investigated the group differences in whole-brain resting-state FC of the 14 ERN seeds between participants with and without MDD. Furthermore, an independent sample (45 MDD patients) was used to evaluate the relationship between the aforementioned abnormal FC in the ERN and symptom improvement after 8 weeks of antidepressant monotherapy.
Results
Compared to the HCs, patients with MDD exhibited aberrant FC between 7 ERN seeds and several cortical and subcortical areas, including the bilateral middle temporal gyrus, bilateral occipital gyrus, right thalamus, calcarine cortex, middle frontal gyrus, and the bilateral superior temporal gyrus. In an independent sample, these aberrant FCs in the ERN were negatively correlated with the reduction rate of the HAMD17 score among MDD patients.
Conclusions
These results might extend our understanding of the neurobiological underpinnings underlying unadaptable or inflexible emotional processing in MDD patients and help to elucidate the mechanisms of therapeutic response.
Timing of food intake is an emerging aspect of nutrition; however, there is a lack of research accurately assessing food timing in the context of the circadian system. The study aimed to investigate the relation between food timing relative to clock time and endogenous circadian timing with adiposity and further explore sex differences in these associations among 151 young adults aged 18–25 years. Participants wore wrist actigraphy and documented sleep and food schedules in real time for 7 consecutive days. Circadian timing was determined by dim-light melatonin onset (DLMO). The duration between last eating occasion and DLMO (last EO-DLMO) was used to calculate the circadian timing of food intake. Adiposity was assessed using bioelectrical impedance analysis. Of the 151 participants, 133 were included in the statistical analysis finally. The results demonstrated that associations of adiposity with food timing relative to circadian timing rather than clock time among young adults living in real-world settings. Sex-stratified analyses revealed that associations between last EO-DLMO and adiposity were significant in females but not males. For females, each hour increase in last EO-DLMO was associated with higher BMI by 0·51 kg/m2 (P = 0·01), higher percent body fat by 1·05 % (P = 0·007), higher fat mass by 0·99 kg (P = 0·01) and higher visceral fat area by 4·75 cm2 (P = 0·02), whereas non-significant associations were present among males. The findings highlight the importance of considering the timing of food intake relative to endogenous circadian timing instead of only as clock time.
Previous studies suggest a link between vitamin D status and COVID-19 susceptibility in hospitalised patients. This study aimed to investigate whether vitamin D concentrations in elderly individuals were associated with their susceptibility to Omicron COVID-19 incidence, the severity of the disease and the likelihood of reoccurrence during the era of the post-‘zero-COVID-19’ policies in China.
Design:
In this retrospective study, participants were categorised into three groups based on their 25(OH)D concentrations: deficiency (< 20 ng/ml), insufficiency (20 to < 30 ng/ml) and sufficiency (≥ 30 ng/ml). The demographic and clinical characteristics, comorbidities and the incidence rate, reoccurrence rate and severity of Omicron COVID-19 were retrospectively recorded and analysed by using hospital information system data and an online questionnaire survey.
Setting:
China.
Participants:
222 participants aged 60 years or older from a health management centre.
Results:
Our findings revealed significant differences in the incidence (P = 0·03) and recurrent rate (P = 0·02) of Omicron COVID-19 among the three groups. Participants with lower 25(OH)D concentrations (< 20 ng/ml) exhibited higher rates of initial incidence and reoccurrence and a greater percentage of severe and critical cases. Conversely, individuals with 25(OH)D concentrations ≥ 30 ng/ml had a higher percentage of mild cases (P = 0·003). Binary and ordinal logistic regression models indicated that vitamin D supplementation was not a significant risk factor for COVID-19 outcomes.
Conclusions:
In the elderly population, pre-infection vitamin D deficiency was associated with increased susceptibility to incidence, severity of illness and reoccurrence rates of Omicron COVID-19.
Growing evidence points to the pivotal role of vitamin D in the pathophysiology and treatment of major depressive disorder (MDD). However, there is a paucity of longitudinal research investigating the effects of vitamin D supplementation on the brain of MDD patients.
Methods
We conducted a double-blind randomized controlled trial in 46 MDD patients, who were randomly allocated into either VD (antidepressant medication + vitamin D supplementation) or NVD (antidepressant medication + placebos) groups. Data from diffusion tensor imaging, resting-state functional MRI, serum vitamin D concentration, and clinical symptoms were obtained at baseline and after an average of 7 months of intervention.
Results
Both VD and NVD groups showed significant improvement in depression and anxiety symptoms but with no significant differences between the two groups. However, a greater increase in serum vitamin D concentration was found to be associated with greater improvement in depression and anxiety symptoms in VD group. More importantly, neuroimaging data demonstrated disrupted white matter integrity of right inferior fronto-occipital fasciculus along with decreased functional connectivity between right frontoparietal and medial visual networks after intervention in NVD group, but no changes in VD group.
Conclusions
These findings suggest that vitamin D supplementation as adjunctive therapy to antidepressants may not only contribute to improvement in clinical symptoms but also help preserve brain structural and functional connectivity in MDD patients.
Environment-induced epigenetics are involved in diapause regulation, but the molecular mechanism that epigenetically couples nutrient metabolism to diapause regulation remains unclear. In this study, we paid special attention to the significant differences in the level of N6-adenosine methylation (m6A) of dihydroxyacetone phosphate acyltransferase (DHAPAT) and phosphatidate phosphatase (PAP) genes in the lipid metabolism pathway of the bivoltine silkworm (Bombyx mori) strain Qiufeng developed from eggs incubated at a normal temperature (QFHT, diapause egg producer) compared to those from eggs incubated at a low temperature (QFLT, non-diapause egg producer). We knocked down DHAPAT in the pupal stage of the QFLT group, resulting in the non-diapause destined eggs becoming diapausing eggs. In the PAP knockdown group, the colour of the non-diapause destined eggs changed from light yellow to pink 3 days after oviposition, but they hatched as normal. Moreover, we validated that YTHDF3 binds to m6A-modified DHAPAT and PAP mRNAs to promote their stability and translation. These results suggest that RNA m6A methylation participates in the diapause regulation of silkworm by changing the expression levels of DHAPAT and PAP and reveal that m6A epigenetic modification can be combined with a lipid metabolism signal pathway to participate in the regulation of insect diapause traits, which provides a clearer image for exploring the physiological basis of insect diapause.
Lithospheric thinning occurred in the North China Craton (NCC) that resulted in extensive Mesozoic magmatism, which has provided the opportunity to explore the mechanism of the destruction of the NCC. In this study, new zircon U–Pb ages, geochemical and Lu–Hf isotopic data are presented for Early Cretaceous adakitic rocks in the Liaodong Peninsula, with the aim of establishing their origin as well as the thinning mechanism of the NCC. The zircon U–Pb data show that crystallization occurred during 127–120 Ma (i.e. Early Cretaceous). These rocks are characterized by high Sr (294–711 ppm) content and Sr/Y ratio (38.5–108), low Yb (0.54–1.24 ppm) and Y (4.9–16.4 ppm) contents, and with no obvious Eu anomalies, implying that they are adakitic rocks. They are enriched in large-ion lithophile elements (e.g. Ba, K, Pb and Sr) and depleted in high-field-strength elements (e.g. Nb, Ta, P and Ti). These adakitic rocks have negative zircon ϵHf(t) contents (−28.9 to −15.0) with two-stage Hf model ages (TDM2) of 3004–2131 Ma. Based on the geochemical features, such as low TiO2 and MgO contents, and high La/Yb and K2O/Na2O ratios, these adakites originated from the partial melting of thickened eclogitic lower crust. They were in an extensional setting associated with the slab rollback of the Palaeo-Pacific Ocean. In combination with previous studies, as a result of the rapid retracting of the Palaeo-Pacific Ocean during 130–120 Ma, the asthenosphere upwelled and modified the thickened lithospheric mantle, which lost its stability, resulting in the lithospheric delamination and thinning of the NCC.
Using detailed data on company visits by Chinese mutual funds, we provide direct evidence of mutual fund information acquisition activities and the consequent informational advantages mutual funds establish in local firms. Mutual funds are more likely to visit local and nearby firms both in and outside of their portfolios, but the ease of travel between fund and firm locations can substantially alleviate geographic distance constraints. Company visits by mutual funds are strongly associated with both fund trading activities and fund trading performance. Our results show that geographic constraints and costly information acquisition amplify information asymmetry in financial markets.
This study compares the detection rates of haemoglobin absorption spectral imaging and white light imaging in laryngeal papilloma surgery.
Methods
Seventeen patients with laryngeal papilloma who underwent surgery in our department from September 2019 to September 2021 were selected. All patients underwent carbon dioxide laser surgery under a microscope. The lesion sites were explored in white light mode and haemoglobin absorption spectral imaging mode. The pharynx and larynx anatomical sites were evaluated using Derkay's all-position scoring system. The numbers and scores for lesions observed in the two modes were compared.
Results
In 17 cases, there were statistically significant differences in the numbers of laryngeal papillomas (Derkay score) detected by white light mode and haemoglobin absorption spectral imaging mode. In 9 of 17 patients (52.94 per cent), the haemoglobin absorption spectral imaging mode showed additional diseased tissues.
Conclusion
The haemoglobin absorption spectral imaging mode can dynamically identify diseased tissues in carbon dioxide laser surgery under a microscope and improve the laryngeal papilloma detection rate.
We present a theoretical study of mode evolution in high-power distributed side-coupled cladding-pumped (DSCCP) fiber amplifiers. A semi-analytical model taking the side-pumping schemes, transverse mode competition, and stimulated thermal Rayleigh scattering into consideration has been built, which can model the static and dynamic mode evolution in high-power DSCCP fiber amplifiers. The mode evolution behavior has been investigated with variation of the fiber amplifier parameters, such as the pump power distribution, the length of the DSCCP fiber, the averaged coupling coefficient, the number of the pump cores and the arrangement of the pump cores. Interestingly, it revealed that static mode evolution induced by transverse mode competition is different from the dynamic evolution induced by stimulated thermal Rayleigh scattering. This shows that the high-order mode experiences a slightly higher gain in DSCCP fiber amplifiers, but the mode instability thresholds for DSCCP fiber amplifiers are higher than those for their end-coupled counterparts. By increasing the pump core number and reducing the averaged coupling coefficient, the mode instability threshold can be increased, which indicates that DSCCP fibers can provide additional mitigation strategies of dynamic mode instability.
The Jueluotage area, which is located in the southern branch of the Eastern Tianshan and northeast of the Tarim Basin, represents a vital locality for investigating intracontinental reactivation induced by the tectonic events at the Eurasian plate margin. This study applies zircon and apatite (U–Th)/He and apatite fission-track thermochronology to the Jueluotage area in the Eastern Tianshan. Our data and thermal history modelling show that the Jueluotage area experienced Triassic–Early Jurassic (˜240–180 Ma) cooling, reflecting the closure of the North Tianshan Ocean and subsequent far-field effects of collision/accretion of the Qiangtang Block and Kunlun terrane. Following this period of fast cooling, a differential exhumation process occurred between the various tectonic belts in the Jueluotage area. The Aqishan–Yamansu belt was exposed at the surface during the Triassic–Early Jurassic cooling phase and experienced subsequent burial, which continued until Early Cretaceous time when a pulse of exhumation occurred. However, the major fault zones (Kanggurtag ductile shear zone and Aqikkuduk Fault) and Central Tianshan arc have remained tectonically stable since Early Jurassic time. No Cenozoic rapid cooling was recorded by the low-temperature thermochronology results in this study, indicating that much of the Jueluotage area was exhumed to the upper crust in the late Mesozoic period.
Effects of fast-propagating water waves on the overlying wind are investigated using simulation and theoretical analysis. By performing a large eddy simulation (LES) of turbulent wind over water waves with high wave age, we observe that the perturbation to wind velocity and pressure by the waves, or the wave-induced airflow, is mainly induced by the vertical movement of the wave surface. We perform scaling analysis to show that the turbulent stress effects on fast wave-induced airflow are negligible. Moreover, we find that the curvilinear model developed for opposing wave effects on wind by Cao et al. (J. Fluid Mech., vol. 901, 2020, p. A27) provides predictions that agree well with the present LES results of wind following fast waves. Our analyses of the results indicate that the fast wave-induced airflow is a quasilinear process. To elucidate the mechanisms for fast wave effects, we split the curvilinear model into two equations corresponding to wave kinematics and forcing by wave elevation, respectively. Using these equations, we illustrate that the vertical component of wave orbital velocity induces a strong airflow perturbation, which produces the dominant components of fast wave-induced airflow and determines its overall spatial structure. Furthermore, we discover that the weak components of fast wave-induced airflow are forced by the dominant components via viscous stress and by the forcing induced by wave elevation, and generate the form drag on the wave surface.
To determine what exacerbate severity of the COVID-19 among patients without comorbidities and advanced age and investigate potential clinical indicators for early surveillance, we adopted a nested case−control study, design in which severe cases (case group, n = 67) and moderate cases (control group, n = 67) of patients diagnosed with COVID-19 without comorbidities, with ages ranging from 18 to 50 years who admitted to Wuhan Tongji Hospital were matched based on age, sex and BMI. Demographic and clinical characteristics, and risk factors associated with severe symptoms were analysed. Percutaneous oxygen saturation (SpO2), lymphocyte counts, C-reactive protein (CRP) and IL-10 were found closely associated with severe COVID-19. The adjusted multivariable logistic regression analyses revealed that the independent risk factors associated with severe COVID-19 were CRP (OR 2.037, 95% CI 1.078–3.847, P = 0.028), SpO2 (OR 1.639, 95% CI 0.943–2.850, P = 0.080) and lymphocyte (OR 1.530, 95% CI 0.850–2.723, P = 0.148), whereas the changes exhibited by indicators influenced incidence of disease severity. Males exhibited higher levels of indicators associated with inflammation, myocardial injury and kidney injury than the females. This study reveals that increased CRP levels and decreased SpO2 and lymphocyte counts could serve as potential indicators of severe COVID-19, independent of comorbidities, advanced age and sex. Males could at higher risk of developing severe symptoms of COVID-19 than females.
We perform large-eddy simulation (LES) and theoretical analysis to investigate the effects of opposing waves on overlying turbulent wind. The LES results show that opposing waves induce nearly antisymmetric vertical velocity $\tilde {w}$ in the wind on the two sides of the wave crest, while the streamwise velocity $\tilde {u}$ away from the surface and the air pressure $\tilde {p}$ seem symmetric. To study the mechanisms for the wave-induced airflow, we develop a viscous model by linearising the phase-averaged Navier–Stokes equations in the mapped computational curvilinear coordinate. To illustrate the flow dynamics, we split $\tilde {w}$ into an antisymmetric component and a symmetric component. The solution of the antisymmetric component of $\tilde {w}$ from the viscous curvilinear model agrees well with the LES results for different opposing wave conditions. According to the viscous curvilinear model, the large-magnitude antisymmetric component of $\tilde {w}$ is driven by the wave kinematics at the surface and amplified by the mean shear and viscous stress in the air, and it causes the strong symmetric components of $\tilde {u}$ and $\tilde {p}$. In contrast, the small-magnitude symmetric component of $\tilde {w}$ is forced by the antisymmetric $\tilde {w}$ through viscous and turbulent stresses near the surface, and it can be described by a further simplified inviscid curvilinear model away from the surface. It is discovered that the weak symmetric $\tilde {w}$ causes a slight asymmetry in $\tilde {u}$ and $\tilde {p}$, and generates a mean wave-coherent stress and the form drag on the wave surface. The wave attenuation rates quantified using the form drag agree with the published experiments.
Underground Nuclear Astrophysics in China (JUNA) will take the advantage of the ultra-low background in Jinping underground lab. High current accelerator with an ECR source and detectors were commissioned. JUNA plans to study directly a number of nuclear reactions important to hydrostatic stellar evolution at their relevant stellar energies. At the first period, JUNA aims at the direct measurements of 25Mg(p,γ)26 Al, 19F(p,α) 16 O, 13C(α, n) 16O and 12C(α,γ) 16O near the Gamow window. The current progress of JUNA will be given.
Toxigenic Clostridium difficile (C. difficile) carriers represent an important source in the transmission of C. difficile infection (CDI) during hospitalisation, but its prevalence and mode in patients with hepatic cirrhosis are not well established. We investigated longitudinal changes in carriage rates and strain types of toxigenic C. difficile from admission to discharge among hepatic cirrhosis patients. Toxigenic C. difficile was detected in 104 (19.8%) of 526 hepatic cirrhosis patients on admission, and the carriage status changed in a portion of patients during hospitalisation. Approximately 56% (58/104) of patients lost the colonisation during their hospital stay. Among the remaining 48 patients who remained positive for toxigenic C. difficile, the numbers of patients who were positive at one, two, three and four isolations were 10 (55.6%), three (16.7%), two (11.1%) and three (16.7%), respectively. Twenty-eight patients retained a particular monophyletic strain at multiple isolations. The genotype most frequently identified was the same as that frequently identified in symptomatic CDI patients. A total of 25% (26/104) of patients were diagnosed with CDI during their hospital stay. Conclusions: Colonisation with toxigenic C. difficile strains occurs frequently in cirrhosis patients and is a risk factor for CDI.
We conducted a 9-d seismic experiment in October 2015 at Laohugou Glacier No. 12. We identified microseismic signals using the short-term/long-term average trigger algorithm at four stations and classified them as long and short-duration events based on waveform, frequency, duration and magnitude characteristics. Both categories show systematical diurnal trends. The long-duration events are low-frequency tremor-like events that mainly occurred during the daytime with only several events per day. These events lasted tens of seconds to tens of minutes and are likely related to resonance of daytime meltwater. The dominant short-duration events mostly occurred during the night time with a peak occurrence frequency of ~360 h−1. Their short-duration (<0.2 s), high frequency (20–100 Hz) and dominance of Rayleigh waves are typical of events for near-surface crack opening. A strong negative correlation between the hourly event number and temperature change rate suggests that the occurrence of night-time events is controlled by the rate of night-time cooling. We estimated the near-surface tensile stress due to thermal contraction at night to be tens of kilopascals, which is enough to induce opening of surface cracks with pre-existing local stress concentrations, although we cannot exclude the effect of refreezing of meltwater produced during the day.
Combining density functional theory calculations and temperature programmed desorption (TPD) experiments, the adsorption behavior of various sulfur containing compounds, including C2H5SH, CH3SCH3, tetrahydrothiophene, thiophene, benzothiophene, dibenzothiophene, and their derivatives on the coordinately unsaturated sites of Mo27Sx model nanoparticles, are studied systematically. Sulfur molecules with aromaticity prefer flat adsorption than perpendicular adsorption. The adsorption of nonaromatic molecules is stronger than the perpendicular adsorption of aromatic molecules, but weaker than the flat adsorption of them. With gradual hydrogenation (HYD), the binding affinity in the perpendicular adsorption modes increases, while in flat adsorption modes it increases first, then decreases. Significant steric effects on the adsorption of dimethyldibenzothiophene were revealed in perpendicular adsorption modes. The steric effect, besides weakening adsorption, could also activate the S–C bonds through a compensation effect. Finally, by comparing the theoretical adsorption energies with the TPD results, we suggest that HYD and direct-desulfurization path may happen simultaneously, but on different active sites.
The microstructure evolution of the directionally solidified NiAl–Cr(Mo) planar eutectic lamellar structure was studied at 1150 °C and times of up to 400 h. The planar eutectic lamellar structure is obtained at the withdrawal rate range of 2.5–7.5 μm/s. The interlamellar spacing decreases gradually with increasing the withdrawal rate. The lamellar termination (like angular or smooth) commonly exists in the as-DS alloy. After high temperature treatment, the lamellar structure at 2.5 μm/s (interlamellar spacing, 3.7 μm) is almost stable, only a little migration of termination occurs at 400 h. When the withdrawal rate increases to 4.5 μm/s, the coarsening and migration of termination occur at 200 h. The adjacently coarsened terminations assemble when the coarsening processes to a certain degree, thus resulting in the formation of the blocky Cr(Mo) phase. Similarly, the above instable phenomenon occurs at 7.5 μm/s. The relevant instability mechanisms are discussed.
Silylated kaolinites were synthesized at 80°C without the use of inert gas protection. The method presented started with mechanical grinding of kaolinite, followed by grafting with 3- aminopropyltriethoxysilane (APTES). The mechanical grinding treatment destroyed the ordered sheets of kaolinite, formed fine fragments and generated broken bonds (undercoordinated metal ions). These broken bonds served as new sites for the condensation with APTES. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of −CH2 from APTES. 29Si cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy (29Si CP/MAS NMR) showed that the principal bonding mechanism between APTES and kaolinite fitted a tridentate silylation model (T3) with a chemical shift at −66.7 ppm. The silane loadings of the silylated samples were estimated from the mass loss obtained by TG-DTG curves. The results showed that the 6-hour ground kaolinite could be grafted with the most APTES (7.0%) using cyclohexane as solvent. The loaded amount of APTES in the silylated samples obtained in different solvents decreased in the order as: nonpolar solvent > polar solvent with low dielectric constant (toluene) > polar solvent with high dielectric constant (ethanol).