Skip to main content Accessibility help

A combined computational and experimental study of the adsorption of sulfur containing molecules on molybdenum disulfide nanoparticles

  • Tao Yang (a1), Junpeng Feng (a2), Xingchen Liu (a3), Yandan Wang (a1), Hui Ge (a2), Dongbo Cao (a2), Hao Li (a1), Qing Peng (a4), Manuel Ramos (a5), Xiao-Dong Wen (a3) and Baojian Shen (a1)...


Combining density functional theory calculations and temperature programmed desorption (TPD) experiments, the adsorption behavior of various sulfur containing compounds, including C2H5SH, CH3SCH3, tetrahydrothiophene, thiophene, benzothiophene, dibenzothiophene, and their derivatives on the coordinately unsaturated sites of Mo27Sx model nanoparticles, are studied systematically. Sulfur molecules with aromaticity prefer flat adsorption than perpendicular adsorption. The adsorption of nonaromatic molecules is stronger than the perpendicular adsorption of aromatic molecules, but weaker than the flat adsorption of them. With gradual hydrogenation (HYD), the binding affinity in the perpendicular adsorption modes increases, while in flat adsorption modes it increases first, then decreases. Significant steric effects on the adsorption of dimethyldibenzothiophene were revealed in perpendicular adsorption modes. The steric effect, besides weakening adsorption, could also activate the S–C bonds through a compensation effect. Finally, by comparing the theoretical adsorption energies with the TPD results, we suggest that HYD and direct-desulfurization path may happen simultaneously, but on different active sites.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to



Hide All
1.Delmon, B. and Froment, G.F.: Remote control of catalytic sites by spillover species: A chemical reaction engineering approach. Cat. Rev. 38, 69 (1996).
2.Topsøe, H., Clausen, B., and Massoth, F.: Hydrotreating catalysis. In Catalysis, Anderson, J. and Boudart, M., eds. (Springer Berlin Heidelberg, New York, USA, 1996); p. 1.
3.European Parliament and of the Council, European Directive 98/70/CE of the European Parliament and of the Council, Official Journal of the European Communities, 350, 58 (1998).
4.Mills, P., Korlann, S., Bussell, M.E., Reynolds, M.A., Ovchinnikov, M.V., Angelici, R.J., Stinner, C., Weber, T., and Prins, R.: Vibrational study of organometallic complexes with thiophene ligands: Models for adsorbed thiophene on hydrodesulfurization catalysts. J. Phys. Chem. A 105, 4418 (2001).
5.Mitchell, P.C.H., Green, D.A., Payen, E., Tomkinson, J., and Parker, S.F.: Interaction of thiophene with a molybdenum disulfide catalyst-an inelastic neutron scattering study. Phys. Chem. Chem. Phys. 1, 3357 (1999).
6.Harris, S. and Chianelli, R.R.: Catalysis by transition metal sulfides: A theoretical and experimental study of the relation between the synergic systems and the binary transition metal sulfides. J. Catal. 98, 17 (1986).
7.Sullivan, D.L. and Ekerdt, J.G.: Mechanisms of thiophene hydrodesulfurization on model molybdenum catalysts. J. Catal. 178, 226 (1998).
8.Komarneni, M., Sand, A., and Burghaus, U.: Adsorption of thiophene on inorganic MoS2 fullerene-like nanoparticles. Catal. Lett. 129, 66 (2009).
9.Atter, G.D., Chapman, D.M., Hester, R.E., Green, D.A., Mitchell, P.C.H., and Tomkinson, J.: Refined ab initio inelastic neutron scattering spectrum of thiophene. J. Chem. Soc., Faraday Trans. 93, 2977 (1997).
10.Rodriguez, J.A.: Interaction of hydrogen and thiophene with Ni/MoS2 and Zn/MoS2 surfaces: A molecular orbital study. J. Phys. Chem. B 101, 7524 (1997).
11.Toulhoat, H., Raybaud, P., Kasztelan, S., Kresse, G., and Hafner, J.: Transition metals to sulfur binding energies relationship to catalytic activities in HDS: Back to sabatier with first principle calculations1. Catal. Today 50, 629 (1999).
12.Ma, X. and Schobert, H.H.: Molecular simulation on hydrodesulfurization of thiophenic compounds over MoS2 using ZINDO. J. Mol. Catal. A: Chem. 160, 409 (2000).
13.Raybaud, P., Hafner, J., Kresse, G., and Toulhoat, H.: Adsorption of thiophene on the catalytically active surface of MoS2: An ab initio local-density-functional study. Phys. Rev. Lett. 80, 1481 (1998).
14.Cristol, S., Paul, J-F., Schovsbo, C., Veilly, E., and Payen, E.: DFT study of thiophene adsorption on molybdenum sulfide. J. Catal. 239, 145 (2006).
15.Mijoin, J., Pérot, G., Bataille, F., Lemberton, J.L., Breysse, M., and Kasztelan, S.: Mechanistic considerations on the involvement of dihydrointermediates in the hydrodesulfurization of dibenzothiophene-type compounds over molybdenum sulfide catalysts. Catal. Lett. 71, 139 (2001).
16.Vanrysselberghe, V., Le Gall, R., and Froment, G.F.: Hydrodesulfurization of 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene on a CoMo/Al2O3 catalyst: Reaction network and kinetics. Ind. Eng. Chem. Res. 37, 1235 (1998).
17.Duayne Whitehurst, D., Isoda, T., and Mochida, I.: Present state of the art and future challenges in the hydrodesulfurization of polyaromatic sulfur compounds. In Advances in Catalysis, Eley, D.D., Haag, W.O., Gates, B., and Knözinger, H., eds. (Academic Press, 1998); p. 345.
18.Raybaud, P., Hafner, J., Kresse, G., and Toulhoat, H.: Ab initio energy profiles for thiophene HDS on the MoS2 (1010) edge-surface. In Studies in Surface Science and Catalysis, Delmon, G.F.F.B. and Grange, P., eds. (Elsevier, Amsterdam, the Netherlands, 1999); p. 309.
19.Cristol, S., Paul, J.F., Payen, E., Bougeard, D., Hafner, J., and Hutschka, F.: Theoretical study of benzothiophene hydrodesulfurization on MoS2. In Studies in Surface Science and Catalysis, Delmon, G.F.F.B. and Grange, P., eds. (Elsevier, Amsterdam, the Netherlands, 1999); p. 327.
20.Todorova, T., Prins, R., and Weber, T.: A density functional theory study of the hydrogenolysis reaction of CH3SH to CH4 on the catalytically active (100) edge of 2H-MoS2. J. Catal. 236, 190 (2005).
21.Todorova, T., Prins, R., and Weber, T.: A density functional theory study of the hydrogenolysis and elimination reactions of C2H5SH on the catalytically active (100) edge of 2H-MoS2. J. Catal. 246, 109 (2007).
22.Joshi, Y.V., Ghosh, P., Venkataraman, P.S., Delgass, W.N., and Thomson, K.T.: Electronic descriptors for the adsorption energies of sulfur-containing molecules on Co/MoS2, using DFT calculations. J. Phys. Chem. C 113, 9698 (2009).
23.Šarić, M., Rossmeisl, J., and Moses, P.G.: Modeling the adsorption of sulfur containing molecules and their hydrodesulfurization intermediates on the Co-promoted MoS2 catalyst by DFT. J. Catal. 358, 131 (2018).
24.Moses, P.G., Mortensen, J.J., Lundqvist, B.I., and Nørskov, J.K.: Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS2. J. Chem. Phys. 130, 104709 (2009).
25.Orita, H., Uchida, K., and Itoh, N.: Adsorption of thiophene on an MoS2 cluster model catalyst: Ab initio density functional study. J. Mol. Catal. A: Chem. 193, 197 (2003).
26.Orita, H., Uchida, K., and Itoh, N.: A volcano-type relationship between the adsorption energy of thiophene on promoted MoS2 cluster-model catalysts and the experimental HDS activity: Ab initio density functional study. Appl. Catal., A 258, 115 (2004).
27.Yao, X-Q., Li, Y-W., and Jiao, H.: Mechanism of thiophene hydrodesulfurization on a Mo3S9 model catalyst. A computational study. J. Mol. Struct.: THEOCHEM 726, 81 (2005).
28.McCarty, K.F. and Schrader, G.L.: Deuterodesulfurization of thiophene: An investigation of the reaction mechanism. J. Catal. 103, 261 (1987).
29.Salnikov, O.G., Burueva, D.B., Barskiy, D.A., Bukhtiyarova, G.A., Kovtunov, K.V., and Koptyug, I.V.: A mechanistic study of thiophene hydrodesulfurization by the parahydrogen-induced polarization technique. ChemCatChem 7, 3508 (2015).
30.Hensen, E.J.M., Vissenberg, M.J., de Beer, V.H.J., van Veen, J.A.R., and van Santen, R.A.: Kinetics and mechanism of thiophene hydrodesulfurization over carbon-supported transition metal sulfides. J. Catal. 163, 429 (1996).
31.Roberts, J.T. and Friend, C.M.: Model hydrodesulfurization reactions: Saturated tetrahydrothiophene and 1-butanethiol on molybdenum(110). J. Am. Chem. Soc. 108, 7204 (1986).
32.Liu, A.C. and Friend, C.M.: Evidence for facile and selective desulfurization: The reactions of 2,5-dihydrothiophene on molybdenum(110). J. Am. Chem. Soc. 113, 820 (1991).
33.Markel, E.J., Schrader, G.L., Sauer, N.N., and Angelici, R.J.: Thiophene, 2,3- and 2,5-dihydrothiophene, and tetrahydrothiophene hydrodesulfurization on Mo and Reγ-Al2O3 catalysts. J. Catal. 116, 11 (1989).
34.Hargreaves, A.E. and Ross, J.R.H.: An investigation of the mechanism of the hydrodesulfurization of thiophene over sulfided Co–MoAl2O3 catalysts. J. Catal. 56, 363 (1979).
35.Devanneaux, J. and Maurin, J.: Hydrogenolysis and hydrogenation of thiophenic compounds on a Co–MoAl2O3 catalyst. J. Catal. 69, 202 (1981).
36.Yang, H., Fairbridge, C., and Ring, Z.: Adsorption of dibenzothiophene derivatives over a MoS2 nanocluster: A density functional theory study of structure–reactivity relations. Energy Fuels 17, 387 (2003).
37.Yang, H., Fairbridge, C., Chen, J., and Ring, Z.: Structure-HDS reactivity relationship of dibenzothiophenes based on density functional theory. Catal. Lett. 97, 217 (2004).
38.Cristol, S., Paul, J-F., Payen, E., Bougeard, D., Hutschka, F., and Clémendot, S.: DBT derivatives adsorption over molybdenum sulfide catalysts: A theoretical study. J. Catal. 224, 138 (2004). Beer, V.H.J., Dahlmans, J.G.J., and Smeets, J.G.M.: Hydrodesulfurization and hydrogenation properties of promoted MoS2 and WS2 catalysts under medium pressure conditions. J. Catal. 42, 467 (1976).
40.Geneste, P., Amblard, P., Bonnet, M., and Graffin, P.: Hydrodesulfurization of oxidized sulfur compounds in benzothiophene, methylbenzothiophene, and dibenzothiophene series over CoO–MoO3–Al2O3 catalyst. J. Catal. 61, 115 (1980).
41.Van Parijs, I.A., Hosten, L.H., and Froment, G.F.: Kinetics of the hydrodesulfurization on a cobalt–molybdenum/.gamma.–alumina catalyst. 2. Kinetics of the hydrogenolysis of benzothiophene. Ind. Eng. Chem. Prod. Res. Dev. 25, 437 (1986).
42.Ho, T.C. and Sobel, J.E.: Kinetics of dibenzothiophene hydrodesulfurization. J. Catal. 128, 581 (1991).
43.Kim, J.H., Ma, X., Song, C., Lee, Y-K., and Oyama, S.T.: Kinetics of two pathways for 4,6-dimethyldibenzothiophene hydrodesulfurization over NiMo, CoMo sulfide, and nickel phosphide catalysts. Energy Fuels 19, 353 (2005).
44.Tuxen, A., Kibsgaard, J., Gøbel, H., Lægsgaard, E., Topsøe, H., Lauritsen, J.V., and Besenbacher, F.: Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters. ACS Nano 4, 4677 (2010).
45.Tuxen, A.K., Füchtbauer, H.G., Temel, B., Hinnemann, B., Topsøe, H., Knudsen, K.G., Besenbacher, F., and Lauritsen, J.V.: Atomic-scale insight into adsorption of sterically hindered dibenzothiophenes on MoS2 and Co–Mo–S hydrotreating catalysts. J. Catal. 295, 146 (2012).
46.Zheng, P., Duan, A., Chi, K., Zhao, L., Zhang, C., Xu, C., Zhao, Z., Song, W., Wang, X., and Fan, J.: Influence of sulfur vacancy on thiophene hydrodesulfurization mechanism at different MoS2 edges: A DFT study. Chem. Eng. Sci. 164, 292 (2017).
47.Helveg, S., Lauritsen, J.V., Lægsgaard, E., Stensgaard, I., Nørskov, J.K., Clausen, B.S., Topsøe, H., and Besenbacher, F.: Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett. 84, 951 (2000).
48.Silva, A.M. and Borges, I.: How to find an optimum cluster size through topological site properties: MoSx model clusters. J. Comput. Chem. 32, 2186 (2011).
49.Li, Y-W., Pang, X-Y., and Delmon, B.: Ab initio study of the structural and electronic properties of a real size MoS2 slab: Mo27S54. J. Phys. Chem. A 104, 11375 (2000).
50.Orita, H., Uchida, K., and Itoh, N.: Ab initio density functional study of the structural and electronic properties of an MoS2 catalyst model: A real size Mo27S54 cluster. J. Mol. Catal. A: Chem. 195, 173 (2003).
51.Wen, X-D., Zeng, T., Li, Y-W., Wang, J., and Jiao, H.: Surface structure and stability of MoSx model clusters. J. Phys. Chem. B 109, 18491 (2005).
52.Delley, B.: An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508 (1990).
53.Delley, B.: Fast calculation of electrostatics in crystals and large molecules. J. Phys. Chem. 100, 6107 (1996).
54.Delley, B.: From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756 (2000).
55.Bergner, A., Dolg, M., Küchle, W., Stoll, H., and Preuß, H.: Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 80, 1431 (1993).
56.Andrae, D., Häußermann, U., Dolg, M., Stoll, H., and Preuß, H.: Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 77, 123 (1990).
57.Inada, Y. and Orita, H.: Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: Evidence of small basis set superposition error compared to Gaussian basis sets. J. Comput. Chem. 29, 225 (2008).
58.Perdew, J.P. and Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).
59.Wen, X-D., Zeng, T., Teng, B-T., Zhang, F-Q., Li, Y-W., Wang, J., and Jiao, H.: Hydrogen adsorption on a Mo27S54 cluster: A density functional theory study. J. Mol. Catal. A: Chem. 249, 191 (2006).
60.Delmon, B.: Advances in hydropurification catalysts and catalysis. In Studies in Surface Science and Catalysis, Trimm, D.L., Akashah, S., Absi-Halabi, M., and Bishara, A., eds. (Elsevier, Amsterdam, the Netherlands, 1989); p. 1.
61.Li, S.Y., Rodriguez, J.A., Hrbek, J., Huang, H.H., and Xu, G.Q.: Reaction of hydrogen with SMo(110) and MoSx films: Formation of hydrogen sulfide. Surf. Sci. 366, 29 (1996).
62.Liu, X., Tkalych, A., Zhou, B., Köster, A.M., and Salahub, D.R.: Adsorption of hexacyclic C6H6, C6H8, C6H10, and C6H12 on a Mo-terminated α-Mo2C (0001) surface. J. Phys. Chem. C 117, 7069 (2013).
63.Houalla, M., Broderick, D.H., Sapre, A.V., Nag, N.K., de Beer, V.H.J., Gates, B.C., and Kwart, H.: Hydrodesulfurization of methyl-substituted dibenzothiophenes catalyzed by sulfided Co–Mo-γ-Al2O3. J. Catal. 61, 523 (1980).
64.Bataille, F., Lemberton, J-L., Michaud, P., Pérot, G., Vrinat, M., Lemaire, M., Schulz, E., Breysse, M., and Kasztelan, S.: Alkyldibenzothiophenes hydrodesulfurization-promoter effect, reactivity, and reaction mechanism. J. Catal. 191, 409 (2000).
65.Meille, V., Schulz, E., Lemaire, M., and Vrinat, M.: Hydrodesulfurization of alkyldibenzothiophenes over a NiMo/Al2O3 catalyst: Kinetics and mechanism. J. Catal. 170, 29 (1997).
66.Michaud, P., Lemberton, J.L., and Pérot, G.: Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene: Effect of an acid component on the activity of a sulfided NiMo on alumina catalyst. Appl. Catal., A 169, 343 (1998).
67.Romero-Rivera, R., Camacho, A.G., Del Valle, M., Alonso, G., Fuentes, S., and Cruz-Reyes, J.: HDS of DBT with molybdenum disulfide catalysts prepared by in situ decomposition of alkyltrimethylammonium thiomolybdates. Top. Catal. 54, 561 (2011).
68.Trakarnpruk, W. and Seentrakoon, B.: Hydrodesulfurization activity of MoS2 and bimetallic catalysts prepared by in situ decomposition of thiosalt. Ind. Eng. Chem. Res. 46, 1874 (2007).
69.Moses, P.G., Hinnemann, B., Topsøe, H., and Nørskov, J.K.: The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: A density functional study. J. Catal. 248, 188 (2007).


Type Description Title
Supplementary materials

Yang et al. supplementary material
Yang et al. supplementary material 1

 Word (1.6 MB)
1.6 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed