We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Fast radio bursts (FRBs) are millisecond-duration radio waves from the Universe. Even though more than 50 physical models have been proposed, the origin and physical mechanism of FRB emissions are still unknown. The classification of FRBs is one of the primary approaches to understanding their mechanisms, but previous studies classified conventionally using only a few observational parameters, such as fluence and duration, which might be incomplete. To overcome this problem, we use an unsupervised machine-learning model, the Uniform Manifold Approximation and Projection to handle seven parameters simultaneously, including amplitude, linear temporal drift, time duration, central frequency, bandwidth, scaled energy, and fluence. We test the method for homogeneous 977 sub-bursts of FRB 20121102A detected by the Arecibo telescope. Our machine-learning analysis identified five distinct clusters, suggesting the possible existence of multiple different physical mechanisms responsible for the observed FRBs from the FRB 20121102A source. The geometry of the emission region and the propagation effect of FRB signals could also make such distinct clusters. This research will be a benchmark for future FRB classifications when dedicated radio telescopes such as the square kilometer array or Bustling Universe Radio Survey Telescope in Taiwan discover more FRBs than before.
MicroRNAs (miRNAs) are endogenous, non-coding RNAs, which are functional in a variety of biological processes through post-transcriptional regulation of gene expression. However, the role of miRNAs in the interaction between Bacillus thuringiensis and insects remains unclear. In this study, small RNA libraries were constructed for B. thuringiensis-infected (Bt) and uninfected (CK) Spodoptera exigua larvae (treated with double-distilled water) using Illumina sequencing. Utilising the miRDeep2 and Randfold, a total of 233 known and 726 novel miRNAs were identified, among which 16 up-regulated and 34 down-regulated differentially expressed (DE) miRNAs were identified compared to the CK. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that potential target genes of DE miRNAs were associated with ABC transporters, fatty acid metabolism and MAPK signalling pathway which are related to the development, reproduction and immunity. Moreover, two miRNA core genes, SeDicer1 and SeAgo1 were identified. The phylogenetic tree showed that lepidopteran Dicer1 clustered into one branch, with SeDicer1 in the position closest to Spodoptera litura Dicer1. A similar phylogenetic relationship was observed in the Ago1 protein. Expression of SeDicer1 increased at 72 h post infection (hpi) with B. thuringiensis; however, expression of SeDicer1 and SeAgo1 decreased at 96 hpi. The RNAi results showed that the knockdown of SeDicer1 directly caused the down-regulation of miRNAs and promoted the mortality of S. exigua infected by B. thuringiensis GS57. In conclusion, our study is crucial to understand the relationship between miRNAs and various biological processes caused by B. thuringiensis infection, and develop an integrated pest management strategy for S. exigua via miRNAs.
This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 μg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 μg/ml and ≤ 1 μg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.
Nonlinear compression has become an obligatory technique along with the development of ultrafast lasers in generating ultrashort pulses with narrow pulse widths and high peak power. In particular, techniques of nonlinear compression have experienced a rapid progress as ytterbium (Yb)-doped lasers with pulse widths in the range from hundreds of femtoseconds to a few picoseconds have become mainstream laser tools for both scientific and industrial applications. Here, we report a simple and stable nonlinear pulse compression technique with high efficiency through cascaded filamentation in air followed by dispersion compensation. Pulses at a center wavelength of 1040 nm with millijoule pulse energy and 160 fs pulse width from a high-power Yb:CaAlGdO4 regenerative amplifier are compressed to 32 fs, with only 2.4% loss from the filamentation process. The compressed pulse has a stable output power with a root-mean-square variation of 0.2% over 1 hour.
Mammalian oocytes not fertilized immediately after ovulation can undergo ageing and a rapid decline in quality. The addition of antioxidants can be an efficient approach to delaying the oocyte ageing process. Onion peel extract (OPE) contains quercetin and other flavonoids with natural antioxidant activities. In this study, we investigated the effect of OPE on mouse oocyte ageing and its mechanism of action. The oocytes were aged in vitro in M16 medium for 16 h after adding OPE at different concentrations (0, 50, 100, 200, and 500 μg/ml). The addition of 100 μg/ml OPE reduced the oocyte fragmentation rate, decreased the reactive oxygen species (ROS) level, increased the glutathione (GSH) level, and improved the mitochondrial membrane potential compared with the control group. The addition of OPE also increased the expression of SOD1, CAT, and GPX3 genes, and the caspase-3 activity in OPE-treated aged oocytes was significantly lower than that in untreated aged oocytes and similar to that in fresh oocytes. These results indicated that OPE delayed mouse oocyte ageing by reducing oxidative stress and apoptosis and enhancing mitochondrial function.
Precision medicine has the potential to transform healthcare by moving from one-size-fits-all to personalised treatment and care. This transition has been greatly facilitated through new high-throughput sequencing technologies that can provide the unique molecular profile of each individual patient, along with the rapid development of targeted therapies directed to the Achilles heels of each disease. To implement precision medicine approaches in healthcare, many countries have adopted national strategies and initiated genomic/precision medicine initiatives to provide equal access to all citizens. In other countries, such as Sweden, this has proven more difficult due to regionally organised healthcare. Using a bottom-up approach, key stakeholders from academia, healthcare, industry and patient organisations joined forces and formed Genomic Medicine Sweden (GMS), a national infrastructure for the implementation of precision medicine across the country. To achieve this, Genomic Medicine Centres have been established to provide regionally distributed genomic services, and a national informatics infrastructure has been built to allow secure data handling and sharing. GMS has a broad scope focusing on rare diseases, cancer, pharmacogenomics, infectious diseases and complex diseases, while also providing expertise in informatics, ethical and legal issues, health economy, industry collaboration and education. In this review, we summarise our experience in building a national infrastructure for precision medicine. We also provide key examples how precision medicine already has been successfully implemented within our focus areas. Finally, we bring up challenges and opportunities associated with precision medicine implementation, the importance of international collaboration, as well as the future perspective in the field of precision medicine.
The study examined the association between depressive symptoms and iron status, anaemia, body weight and pubertal status among Mexican adolescent girls.
Design:
In this cross-sectional study, depressive symptoms were assessed by the 6-item Kutcher Adolescent Depression Scale, and latent class analysis (LCA) was used to identify and characterise groups of girls based on depressive symptoms. Iron status and inflammation were assessed using ferritin and soluble transferrin receptor, C-reactive protein and alpha-1-acid glycoprotein, respectively. Multiple logistic and linear regressions were applied to model class membership as a function of iron status, anaemia, body weight and pubertal status.
Participants:
We collected data from 408 girls aged 12–20 years.
Setting:
Public schools in northern Mexico.
Results:
LCA yielded three classes of depressive symptoms: 44·4 % of the adolescents were ‘unlikely to be depressed’, 41·5 % were ‘likely to be depressed’ and 14·1 % were ‘highly likely to be depressed’. Our analyses demonstrated that iron-deficient girls had greater odds of being ‘likely depressed’ (OR 2·01, 95 % CI 1·01, 3·00) or ‘highly likely depressed’ (OR 2·80, 95 % CI 1·76, 3·84). Linear regression analyses revealed that lower Hb concentrations and higher body weight increased the probability of being ‘likely depressed’. There was no evidence that depressive symptoms were associated with age at menarche and years since menstruation.
Conclusions:
This study shows that iron-deficient adolescent girls are more likely to suffer from depressive symptoms and that lower concentrations of Hb and higher body weight increased the probability of experiencing depressive symptoms.
Streptococcus agalactiae (S. agalactiae) infection is a significant cause of mastitis, resulting in loss of cellular homeostasis and tissue damage. Autophagy plays an essential function in cell survival, defense, and the preservation of cellular homeostasis, and is often part of the response to pathogenic challenge. However, the effect of autophagy induced by S. agalactiae in bovine mammary epithelial cells (bMECs) is mainly unknown. So in this study, an intracellular S. agalactiae infection model was established. Through evaluating the autophagy-related indicators, we observed that after S. agalactiae infection, a significant quantity of LC3-I was converted to LC3-II, p62 was degraded, and levels of Beclin1 and Bcl2 increased significantly in bMECs, indicating that S. agalactiae induced autophagy. The increase in levels of LAMP2 and LysoTracker Deep Red fluorescent spots indicated that lysosomes had participated in the degradation of autophagic contents. After autophagy was activated by rapamycin (Rapa), the amount of p-Akt and p-mTOR decreased significantly, whilst the amount of intracellular S. agalactiae increased significantly. Whereas the autophagy was inhibited by 3-methyladenine (3MA), the number of intracellular pathogens decreased. In conclusion, the results demonstrated that S. agalactiae could induce autophagy through PI3K/Akt/mTOR pathway and utilize autophagy to survive in bMECs.
This research communication aims to characterize the prevalence, molecular characterization and antimicrobial resistance profiling of Streptococcus agalactiae isolated from clinical mastitis in China. A total of 140 Strep. agalactiae isolates were identified from 12 out of 201 farms in 6 provinces, overall herd prevalence was 18.6% and the MLST analysis showed clonal complexes (CC) 103 and CC 67 were present in these herds with CC 103 predominant, accounting for 97.9%. Isolates were mostly sensitive to the tested antimicrobials: penicillin, ceftiofur, amoxi/clav, cefquinome, and vancomycin (100%), followed by cefalexin (97.9%), oxacillin (96.4%), enrofloxacin (95.7%), erythromycin (89.3%), and clindamycin (88.6%). Only 19.3 and 0.7% of isolates were sensitive to tetracycline and daptomycin, respectively, and sequence type (ST) 103 was most resistant to antimicrobials. In conclusion, CC 103 was the predominant subgroup of bovine mastitis Strep. agalactiae in China, and most antimicrobials apart from tetracycline and daptomycin were effective.
At present, the study on autonomous unmanned ground vehicle navigation in an unstructured environment is still facing great challenges and is of great significance in scenarios where search and rescue robots, planetary exploration robots, and agricultural robots are needed. In this paper, we proposed an autonomous navigation method for unstructured environments based on terrain constraints. Efficient path search and trajectory optimization on octree map are proposed to generate trajectories, which can effectively avoid various obstacles in off-road environments, such as dynamic obstacles and negative obstacles, to reach the specified destination. We have conducted empirical experiments in both simulated and real environments, and the results show that our approach achieved superior performance in dynamic obstacle avoidance tasks and mapless navigation tasks compared to the traditional 2-dimensional or 2.5-dimensional navigation methods.
We present an overview of induced seismicity due to subsurface engineering in the Netherlands. Our overview includes events induced by gas extraction, underground gas storage, geothermal heat extraction, salt solution mining and post-mining water ingress. Compared to natural seismicity, induced events are usually small (magnitudes ≤ 4.0). However, due to the soft topsoils in combination with shallow hypocentres, in the Netherlands events exceeding magnitude 1.5–2.0 may be felt by the public. These events can potentially damage houses and infrastructure, and undermine public acceptance. Felt events were induced by gas production in the north of the Netherlands and by post-mining water ingress in the south-east. Notorious examples are the earthquakes induced by gas production from the large Groningen gas field with magnitudes up to 3.6. Here, extensive non-structural damage incurred and public support was revoked. As a consequence, production will be terminated in 2022 leaving approximately 800 billion cubic metres of gas unexploited. The magnitudes of the events observed at underground gas storage, geothermal heat production and salt solution mining projects have so far been very limited (magnitudes ≤ 1.7). However, in the future larger events cannot be excluded. Project- or industry-specific risk governance protocols, extensive gathering of subsurface data and adequate seismic monitoring are therefore essential to allow sustainable use of the Dutch subsurface now and over the decades to come.
The effect of vitamin D (VD) on the risk of preeclampsia (PE) is uncertain. Few of previous studies focused on the relationship between dietary VD intake and PE risk. Therefore, we conducted this 1:1 matched case–control study to explore the association of dietary VD intake and serum VD concentrations with PE risk in Chinese pregnant women. A total of 440 pairs of participants were recruited during March 2016 to June 2019. Dietary information was obtained using a seventy-eight-item semi-quantitative FFQ. Serum concentrations of 25(OH)D2 and 25(OH)D3 were measured by liquid chromatography–tandem MS. Multivariate conditional logistic regression was used to estimate OR and 95 % CI. Restricted cubic splines (RCS) were plotted to evaluate the dose–response relationship of dietary VD intake and serum VD concentrations with PE risk. Compared with the lowest quartile, the OR of the highest quartile were 0·45 (95 % CI 0·29, 0·71, Ptrend = 0·001) for VD dietary intake and 0·26 (95 % CI 0·11, 0·60, Ptrend = 0·003) for serum levels after adjusting for confounders. In addition, the RCS analysis suggested a reverse J-shaped relationship between dietary VD intake and PE risk (P-nonlinearity = 0·02). A similar association was also found between serum concentrations of total 25(OH)D and PE risk (P-nonlinearity = 0·02). In conclusion, this study provides evidence that higher dietary intake and serum levels of VD are associated with the lower risk of PE in Chinese pregnant women.
Staphylococcus aureus is a common pathogen of bovine mastitis which can induce autophagy and inhibit autophagy flux, resulting in intracellular survival and persistent infection. The aim of the current study was to investigate the role of p38α in the autophagy induced by intracellular S. aureus in bovine mammary epithelial cells. An intracellular infection model of MAC-T cells was constructed, and activation of p38α was examined after S. aureus invasion. Through activating/inhibiting p38α by anisomycin/SB203580, the autophagosomes, LC3 and p62 level were analyzed by immunofluorescence and western blot. To further study the detailed mechanism of p38α, phosphorylation of ULK1ser757 was also detected. The results showed that intracellular S. aureus activated p38α, and the activation developed in a time-dependent manner. Inhibition of p38α promoted intracellular S. aureus-induced autophagy flow, up-regulated the ratio of LC3 II/I, reduced the level of p62 and inhibited the phosphorylation of ULK1ser757, whereas the above results were reversed after activation of p38α. The current study indicated that intracellular S. aureus can inhibit autophagy flow by activating p38α in bovine mammary epithelial cells.
In this paper, we present a reanalysis of the silicon He-$\mathrm{\alpha}$ X-ray spectrum emission in Fujioka et al.’s 2009 photoionization experiment. The computations were performed with our radiative-collisional code, RCF. The central ingredients of our computations are accurate atomic data, inclusion of satellite lines from doubly excited states and accounting for the reabsorption of the emitted photons on their way to the spectrometer. With all these elements included, the simulated spectrum turns out to be in good agreement with the experimental spectrum.
With the assimilation of satellite-based sea-ice thickness (SIT) data, the new SIT reanalysis from the Towards an Operational Prediction system for the North Atlantic European coastal Zones (TOPAZ4) was released from 2014 to 2018. Apart from assimilating sea-ice concentration and oceanic variables, TOPAZ4 further assimilates CS2SMOS SIT. In this study, the 5-year reanalysis is compared with CS2SMOS, the Pan-Arctic Ice-Ocean Modeling and Assimilating System (PIOMAS) and the Combined Model and Satellite Thickness (CMST). Moreover, we evaluate TOPAZ4 SIT with field observations from upward-looking sonar (ULS), ice mass-balance buoys, Operation IceBridge Quicklook and Sea State Ship-borne Observations. The results indicate TOPAZ4 well reproduces the spatial characteristics of the Arctic SIT distributions, with large differences with CS2SMOS/PIOMAS/CMST mainly restricted to the Atlantic Sector and to the month of September. TOPAZ4 shows thinner ice in March and April, especially to the north of the Canadian Arctic Archipelago with a mean bias of −0.30 m when compared to IceBridge. Besides, TOPAZ4 simulates thicker ice in the Beaufort Sea when compared to ULS, with a mean bias of 0.11 m all year round. The benefit from assimilating SIT data in TOPAZ4 is reflected in a 34% improvement in root mean square deviation.
In this article, we discuss the backgrounds and technical details about several smart manufacturing projects in a tier-one electronics manufacturing facility. We devise a process to manage logistic forecast and inventory preparation for electronic parts using historical data and a recurrent neural network to achieve significant improvement over current methods. We present a system for automatically qualifying laptop software for mass production through computer vision and automation technology. The result is a reliable system that can save hundreds of man-years in the qualification process. Finally, we create a deep learning-based algorithm for visual inspection of product appearances, which requires significantly less defect training data compared to traditional approaches. For production needs, we design an automatic optical inspection machine suitable for our algorithm and process. We also discuss the issues for data collection and enabling smart manufacturing projects in a factory setting, where the projects operate on a delicate balance between process innovations and cost-saving measures.
Previous nutritional studies have shown that insulin regulation is different between DT and A strains of gibel carp. As leptin plays a pivotal role in the effects of insulin, we hypothesised that leptin regulation of glucose and lipid metabolism would differ between the two strains. To test our hypothesis, recombinant human leptin was injected into two strains. The results showed that leptin activated the phosphatidylinositol 3-kinase (PI3K)–protein kinase B (AKT), AMP-activated protein kinase–acetyl coenzyme A carboxylase and Janus kinase 2 (JAK2)–signal transducer and activator of transcription (STAT) signalling pathways in both strains. Hypoglycaemia induced by leptin might be due to higher glucose uptake by the liver and muscles together with enhanced glycolytic potential and reduced gluconeogenic potential. Decreased lipogenesis and up-regulated fatty acid oxidation were induced by leptin. In terms of genotype, the PI3K–AKT signalling pathway was more strongly activated by leptin in the muscle tissue of the A strain, as reflected by the heightened phosphorylation of AKT. Furthermore, glycogen content, glycolytic enzyme activity and gluconeogenic capability were higher in the A strain than the DT strain. Strain A had higher levels of fatty acid synthesis and lipolytic capacity in the liver than the DT strain, but the opposite was true in white muscle. Regarding leptin–genotype interactions, the DT strain displayed stronger regulation of glucose metabolism in the liver by leptin as compared with the A strain. Moreover, a more active JAK2–STAT signalling pathway accompanied by enhanced inhibition of fatty acid synthesis by leptin was observed in the DT strain. Overall, the regulation of glucose and lipid metabolism by leptin differed between the two strains, as expected.
This Research Reflection short review presents an overview of the effects of heat stress on dairy cattle udder health and discusses existing heat stress mitigation strategies for a better understanding and identification of appropriate abatement plans for future stress management. Due to high ambient temperatures with high relative humidity in summer, dairy cows respond by changes of physical, biochemical and biological pathways to neutralize heat stress resulting in decreased production performance and poorer immunity resulting in an increased incidence of intramammary infections (IMI) and a higher somatic cell count (SCC). In vitro studies on bovine polymorphonuclear cells (PMN) suggested that heat stress reduces the phagocytosis capacity and oxidative burst of PMN and alters the expression of apoptotic genes and miRNA which, together with having a negative effect on the immune system, may explain the increased susceptibility to IMI. Although there are limited data regarding the incidence rate of clinical mastitis in many countries or regions, knowledge of SCC at the cow or bulk tank level helps encourage farmers to improve herd health and to develop strategies for infection prevention and cure. Therefore, more research into bulk tank SCC and clinical mastitis rates is needed to explain the effect of heat stress on dairy cow udder health and functions that could be influenced by abatement plans.
The surface energy budget over the Antarctic sea ice from 8 April 2016 through 26 November 2016 are presented. From April to October, Sensible heat flux (SH) and subsurface conductive heat flux (G) were the heat source of surface while latent heat flux (LE) and net radiation flux (Rn) were the heat sink of surface. Our results showed larger downward SH (due to the warmer air in our site) and upward LE (due to the drier air and higher wind speed in our site) compared with SHEBA data. However, the values of SH in N-ICE2015 campaign, which located at a zone with stronger winds and more advection of heat in the Arctic, were comparable to our results under clear skies. The values of aerodynamic roughness length (z0m) and scalar roughness length for temperature (z0h), being 1.9 × 10−3 m and 3.7 × 10−5 m, were suggested in this study. It is found that snow melting might increase z0m. Our results also indicate that the value of log(z0h/z0m) was related to the stability of stratification. In addition, several representative parameterization schemes for z0h have been tested and a couple of schemes were found to make a better performance.
Astrophysical collisionless shocks are amazing phenomena in space and astrophysical plasmas, where supersonic flows generate electromagnetic fields through instabilities and particles can be accelerated to high energy cosmic rays. Until now, understanding these micro-processes is still a challenge despite rich astrophysical observation data have been obtained. Laboratory astrophysics, a new route to study the astrophysics, allows us to investigate them at similar extreme physical conditions in laboratory. Here we will review the recent progress of the collisionless shock experiments performed at SG-II laser facility in China. The evolution of the electrostatic shocks and Weibel-type/filamentation instabilities are observed. Inspired by the configurations of the counter-streaming plasma flows, we also carry out a novel plasma collider to generate energetic neutrons relevant to the astrophysical nuclear reactions.