We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Manned lunar landers must ensure astronaut safety while enhancing payload capacity. Due to traditional landers being weak in high-impact energy absorb and heavy payload capacity, a Starship-type manned lunar lander is proposed in this paper. Firstly, a comprehensive analysis was conducted on the traditional cantilever beam cushioning mechanism for manned lander. Subsequently, a 26-ton manned lander and its landing mechanism were designed, and a rigid-flexible coupling dynamic analysis was performed on the compression process of the primary and auxiliary legs. Secondly, the landing performance of the proposed Starship-type manned lunar lander was compared with the traditional 14-ton manned lander in multiple landing conditions. The results indicate that under normal conditions, the largest acceleration of the proposed 26-ton Starship-type manned lander decreases more than 13.1%. It enables a significant increase in payload capacity while mitigating impact loads under various landing conditions.
The present study aims to provide an understanding of the influence of an afterbody on the flow-induced vibration (FIV) of cylinders. This is achieved through experimental and numerical investigations into the FIV response of a reverse-D-cross-section cylinder of aspect ratio $AR=5$. By carefully monitoring the point of flow separation to show it always occurs at the sharp top and bottom edges and never further upstream, it is demonstrated that vortex-induced vibration (VIV) can occur without an afterbody. However, for other aspect ratios, an afterbody does play a crucial role in determining the type of fluid forces responsible for sustaining VIV from low to moderate Reynolds numbers in the range $100$–$4700$. For a cylinder without an afterbody, it is found that the viscous force originating from the presence of strong compact vortices forming close to the leeward side of the cylinder is responsible for sustaining strong transverse vibration. In contrast, for a cylinder with an afterbody, the dominant force component depends on the size of the afterbody. In cylinders with a small afterbody, such as a reverse-D semi-circular cylinder, the viscous force dominates, while in cylinders with a larger afterbody such as a circular cylinder, the pressure force dominates.
This experimental study employs Bayesian optimisation to maximise the cross-flow (transverse) flow-induced vibration (FIV) of an elastically mounted thin elliptical cylinder by implementing axial (or angular) flapping motions. The flapping amplitude was in proportion to the vibration amplitude, with a relative phase angle imposed between the angular and transverse displacements of the cylinder. The control parameter space spanned over the ranges of proportional gain and phase difference of $0 \leq K_p^* \leq 5$ and $0 \leq \phi _d \leq 360^\circ$, respectively, over a reduced velocity range of $3.0 \leqslant {U^*} = U/({{f_{nw}}} b) \leqslant 8.5$. The corresponding Reynolds number range was $1250 \leqslant {{Re}} =(U b)/\nu \leqslant 3580$. Here, $U$ is the free stream velocity, $b$ is the major cross-sectional diameter of the cylinder, ${{f_{nw}}}$ is the natural frequency of the system in quiescent fluid (water) and $\nu$ is the kinematic viscosity of the fluid. It was found that the controlled body rotation extended the wake-body synchronisation across the entire ${U^*}$ range tested, with a larger amplitude response than the non-rotating case for all flow speeds. Interestingly, two new wake-body synchronisation regimes were identified, which have not been reported in previous studies. As this geometry acts as a ‘hard-oscillator’ for ${U^*} \geqslant 6.3$, an adaptive gain (i.e. one that varies as a function of oscillation amplitude) was also implemented, allowing the body vibration, achieved for a non-rotating cylinder using increasing ${U^*}$ increments, to be excited from rest. The findings of the present study hold potential implications for the use of FIV as a means to efficiently extract energy from free-flowing water sources, a topic of increasing interest over the last decade.
To introduce the Emory 10-element Complex Figure (CF) scoring system and recognition task. We evaluated the relationship between Emory CF scoring and traditional Osterrieth CF scoring approach in cognitively healthy volunteers. Additionally, a cohort of patients undergoing deep brain stimulation (DBS) evaluation was assessed to compare the scoring methods in a clinical population.
Method:
The study included 315 volunteers from the Emory Healthy Brain Study (EHBS) with Montreal Cognitive Assessment (MoCA) scores of 24/30 or higher. The clinical group consisted of 84 DBS candidates. Scoring time differences were analyzed in a subset of 48 DBS candidates.
Results:
High correlations between scoring methods were present for non-recognition components in both cohorts (EHBS: Copy r = 0.76, Immediate r = 0.86, Delayed r = 0.85, Recognition r = 47; DBS: Copy r = 0.80, Immediate r = 0.84, Delayed Recall r = 0.85, Recognition r = 0.37). Emory CF scoring times were significantly shorter than Osterrieth times across non-recognition conditions (all p < 0.00001, individual Cohen’s d: 1.4–2.4), resulting in an average time savings of 57%. DBS patients scored lower than EHBS participants across CF memory measures, with larger effect sizes for Emory CF scoring (Cohen’s d range = 1.0–1.2). Emory CF scoring demonstrated better group classification in logistic regression models, improving DBS candidate classification from 16.7% to 32.1% compared to Osterrieth scoring.
Conclusions:
Emory CF scoring yields results that are highly correlated with traditional Osterrieth scoring, significantly reduces scoring time burden, and demonstrates greater sensitivity to memory decline in DBS candidates. Its efficiency and sensitivity make Emory CF scoring well-suited for broader implementation in clinical research.
Background: A key efficacy indicator in generalized myasthenia gravis (gMG) treatment is improvement in MG-ADL score. Minimal symptom expression (MSE, MG-ADL total score of 0 or 1) is explored as a novel proposed treatment target in gMG in the phase 3 study of intravenous efgartigimod, ADAPT, and its open-label extension, ADAPT+. Methods: Post hoc analyses of acetylcholine receptor antibody positive participants in ADAPT (n=129) and ADAPT+ (n=111) were performed. Results: In ADAPT, 44.6% receiving efgartigimod achieved MSE vs 10.9% of participants given placebo. Despite less frequent assessment during ADAPT+, 40.5% of participants achieved MSE. Eighty-one percent of participants treated with efgartigimod who achieved MSE in ADAPT also achieved MSE during ADAPT+; 23% who had not achieved MSE in ADAPT did in ADAPT+. Achieving MSE was associated with substantial improvements in QMG, MGC, MG-QoL15r, and EQ-5D-5L mean scores of 11.4, 16.0, 12.4, and 0.3 points, respectively, from baseline to best score (across all visits). These drastic improvements resulted in quality of life (QoL) comparable to that of healthy populations. MSE achievement also resulted in sustained improvements in these disease-specific and QoL measures. Conclusions: Participants who achieved MSE showed substantial and consistent improvements across multiple disease measures and experienced QoL comparable to that of healthy populations.
Stroke outcomes research requires risk-adjustment for stroke severity, but this measure is often unavailable. The Passive Surveillance Stroke SeVerity (PaSSV) score is an administrative data-based stroke severity measure that was developed in Ontario, Canada. We assessed the geographical and temporal external validity of PaSSV in British Columbia (BC), Nova Scotia (NS) and Ontario, Canada.
Methods:
We used linked administrative data in each province to identify adult patients with ischemic stroke or intracerebral hemorrhage between 2014-2019 and calculated their PaSSV score. We used Cox proportional hazards models to evaluate the association between the PaSSV score and the hazard of death over 30 days and the cause-specific hazard of admission to long-term care over 365 days. We assessed the models’ discriminative values using Uno’s c-statistic, comparing models with versus without PaSSV.
Results:
We included 86,142 patients (n = 18,387 in BC, n = 65,082 in Ontario, n = 2,673 in NS). The mean and median PaSSV were similar across provinces. A higher PaSSV score, representing lower stroke severity, was associated with a lower hazard of death (hazard ratio and 95% confidence intervals 0.70 [0.68, 0.71] in BC, 0.69 [0.68, 0.69] in Ontario, 0.72 [0.68, 0.75] in NS) and admission to long-term care (0.77 [0.76, 0.79] in BC, 0.84 [0.83, 0.85] in Ontario, 0.86 [0.79, 0.93] in NS). Including PaSSV in the multivariable models increased the c-statistics compared to models without this variable.
Conclusion:
PaSSV has geographical and temporal validity, making it useful for risk-adjustment in stroke outcomes research, including in multi-jurisdiction analyses.
Transient electromagnetic field plays very important roles in the evolution of high-energy-density matter or laser plasma. Now, a new design is proposed in this paper to diagnose the transient magnetic field, using relativistic electron bunch as a probe based on high-energy electron radiography. And based on this scheme, the continuous distribution of magnetic strength field can be snapshotted. For 1 mm thick quadrupole magnet model measured by 50 MeV probe electron beams, the simulation result indicates that this diagnosis has spatial resolution better than 4 microns and high measurement accuracy for strong magnetic strength and high magnetic gradient field no matter whether the magnetic interaction is focusing or defocusing for the range from -510 T∗μm to 510 T∗μm.
Convergent evidence has suggested atypical relationships between brain structure and function in major psychiatric disorders, yet how the abnormal patterns coincide and/or differ across different disorders remains largely unknown. Here, we aim to investigate the common and/or unique dynamic structure–function coupling patterns across major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ).
Methods
We quantified the dynamic structure–function coupling in 452 patients with psychiatric disorders (MDD/BD/SZ = 166/168/118) and 205 unaffected controls at three distinct brain network levels, such as global, meso-, and local levels. We also correlated dynamic structure–function coupling with the topological features of functional networks to examine how the structure–function relationship facilitates brain information communication over time.
Results
The dynamic structure–function coupling is preserved for the three disorders at the global network level. Similar abnormalities in the rich-club organization are found in two distinct functional configuration states at the meso-level and are associated with the disease severity of MDD, BD, and SZ. At the local level, shared and unique alterations are observed in the brain regions involving the visual, cognitive control, and default mode networks. In addition, the relationships between structure–function coupling and the topological features of functional networks are altered in a manner indicative of state specificity.
Conclusions
These findings suggest both transdiagnostic and illness-specific alterations in the dynamic structure–function relationship of large-scale brain networks across MDD, BD, and SZ, providing new insights and potential biomarkers into the neurodevelopmental basis underlying the behavioral and cognitive deficits observed in these disorders.
The non-archosauriform archosauromorph Dinocephalosaurus orientalis was first described from the Upper Member of the Guanling Formation (late Anisian, Middle Triassic) of Guizhou Province by Li in 2003 on the basis of a complete articulated skull and the first three cervical vertebrae exposed in dorsal to right lateral view. Since then, additional specimens have been discovered in southwestern China. Here, five newly discovered specimens are described for the first time, and redescriptions of the holotype IVPP V13767 and another referred specimen, IVPP V13898, are provided. Together, these permit the description of the complete skeleton of this remarkable long-necked marine reptile. The postcranial skeleton is as much as 6 metres long, and characterised by its long tail and even longer neck. The appendicular skeleton exhibits a high degree of skeletal paedomorphosis recalling that of many sauropterygians, but the skull and neck are completely inconsistent with sauropterygian affinities. The palate does not extend back over the basisphenoid region and lacks any development of the closed condition typical of sauropterygians. The arrangement of cranial elements, including the presence of narial fossae, is very similar to that seen in another long-necked archosauromorph, Tanystropheus hydroides, which at least in part represents a convergence related to an aquatic piscivorous lifestyle. The long and low cervical vertebrae support exceptionally elongate cervical ribs that extend across multiple intervertebral joints and contribute to a ‘stiffening bundle of ribs’ extending along the entire ventral side of the neck, as in many other non-crocopodan archosauromorphs. The functional significance of the extraordinarily elongate neck is hard to discern but it presumably played a key role in feeding, and it is probably analogous to the elongate necks seen in pelagic, long-necked plesiosaurs. Dinocephalosaurus orientalis was almost certainly a fully marine reptile and even gave birth at sea.
This study experimentally investigates the influence of structural damping on the transverse flow-induced vibration (FIV) of an elastically mounted thin elliptical cylinder. The cylinder tested has an elliptical ratio of $\varepsilon = b/a = 5$, where $a$ and $b$ are the streamwise and cross-flow dimensions, respectively, and a mass ratio (i.e. the total oscillating mass/the displaced fluid mass) of $17.4$. The FIV response was characterised over a reduced velocity range of $2.30 \leq U^* = U/(\,{{f_{{nw}}}} b) \leq 10.00$ (corresponding to a Reynolds number range of $300 \leq \textit {Re} =(U b)/\nu \leq 1300$) and a structural damping ratio range of $3.62\times 10^{-3}\leq \zeta \leq 1.87\times 10^{-1}$. Here, $U$ is the free stream velocity, ${{f_{{nw}}}}$ is the natural frequency of the system in quiescent fluid (water) and $\nu$ is the kinematic viscosity of the fluid. The FIV response was characterised by four wake–body synchronisation regimes (defined as the matching of the dominant fluid forcing and oscillation frequencies, and labelled regime I, regime II, regime III and the hyper branch) and a desynchronisation region, with the hyper branch representing a high amplitude regime not observed for a circular cylinder. Interestingly, the major vortex shedding mode was predominately two single opposite-signed vortices shed per body vibration cycle. Moreover, hydrogen-bubble-based flow visualisations revealed a secondary vortex street forming in the elongated shear layers associated with largest-scale vibration amplitudes ($A^* = A/b$ up to $7.7$) in the hyper branch and regime II. As the structural damping ratio was increased beyond $1.92 \times 10^{-2}$, the hyper branch was found to be suppressed. The results have potential ramifications for the efficient extraction of energy from free-flowing water sources, which has become increasingly topical over the last decade.
Non-suicidal self-injury (NSSI) has been tied to several forms of emotional and behavioral dysregulation in adolescence, with less attention paid to regulation of anger. Most assume that anger dysregulation leads to engagement in NSSI, rather than the reverse. However, it is plausible that NSSI compromises adolescents’ abilities to regulate their emotions, including anger, because it may reduce the development of alternative regulatory strategies and intensify negative emotions by reducing tolerance of distress. Using three waves of data from a sample of adolescents in 17 Swedish schools (n = 1,304 Mage = 13.68, SDage = .67; 89% of Swedish origin; 58% girls), we examined the directionality of ties between NSSI and three forms of anger dysregulation: dysregulated expressions of anger, anger suppression, and low anger reflection. We also looked for differences in magnitude of paths and gender differences. Random-intercept cross-lagged panel models showed that NSSI predicted changes in all forms of anger dysregulation but found no support for the opposite direction. Gender differences were not evident. Results challenge directionality assumptions and support suggestions that adolescents’ anger regulation degrades when they self-injure.
This study investigates the effect of structural damping on vortex-induced vibration (VIV) of a circular cylinder when the mass ratio is below its critical value. It is confirmed by water-channel experiments and a reduced-order model (ROM) that the previously identified phenomenon of VIV forever, i.e. resonance oscillations at any reduced velocity, persists even with high structural damping. Of interest, the ROM results reveal that the wake mode for VIV forever is unstable with a constant positive growth rate with increasing reduced velocity, while the experimental results suggest that VIV forever is associated with a synchronisation between the non-stationary cylinder vibration frequency and the vortex-shedding frequency.
We prove some zero density theorems for certain families of Dirichlet L-functions. More specifically, the subjects of our interest are the collections of Dirichlet L-functions associated with characters to moduli from certain sparse sets and of certain fixed orders.
Flow transitions are an important fluid-dynamic phenomena for many reasons, including the direct effect on the aerodynamic forces acting on the body. In the present study, two-dimensional (2-D) and three-dimensional (3-D) wake transitions of a NACA0012 airfoil are studied for angles of attack in the range $0^\circ \leq \alpha \leq 20^\circ$ and Reynolds numbers $500 \leq {\textit {Re}} \leq 5000$. The study uses water-channel experiments and 2-D and 3-D numerical simulations based on the nodal spectral-element method, level-set function-based immersed-interface method and Floquet stability analysis. The different wake states are categorised based on the time-instantaneous wake structure, non-dimensional frequency and aerodynamic force coefficients. The wake states and transition boundaries are summarised in a wake regime map. The critical angle of attack and Reynolds number for the supercritical Hopf bifurcation (i.e. steady to periodic wake transition) varies as $\alpha _1 {\sim} {\textit {Re}}^{-0.65}$, while the critical angle of attack for the onset of three dimensionality varies as $\alpha _{3D} {\sim} {\textit {Re}}^{-0.5}$. Over the entire Reynolds number range, the transition to 3-D flow occurs through a mode C (subharmonic) transition. Beyond this initial transition, further instabilities of the 2-D periodic base flow arise and are investigated. For instance, at $ {\textit {Re}}=2000$ and $\alpha _{3D,2}=11.0^\circ$, mode C coexists together with modes related to modes A and QP seen in a stationary circular cylinder wake. In contrast, at $ {\textit {Re}}=5000$ and $\alpha _{3D,2}=8.0^\circ$, the dominant mode C coexists with mode QP. Three-dimensional simulations well beyond critical angles indicate that 2-D vortex-street transitions are approximately maintained in the fully saturated 3-D wakes in a spanwise-averaged sense.
Meat quality is not only influenced by breed but also rearing environment. The aim of this study was to evaluate the influence of different housing environments on growth performance, carcase traits, meat quality, physiological response pre-slaughter and fatty acid composition in two pig breeds. A total of 120 growing pigs at 60-70 days of age were arranged in a 2 × 2 factorial design with the breeds (Duroc × Landrace × Large White [D × L × LW] and Duroc × Landrace × Min pig [D × L × M]) and environmental enrichment (barren concrete floor or enriched with straw bedding) as factors. Each treatment was performed in triplicate with ten pigs per replicate. The pigs housed in the enriched environment exhibited a higher average daily gain, average daily feed intake, saturated fatty acid percentage and backfat depth than the pigs reared in the barren environment. Plasma cortisol levels were lower and growth hormone higher in enriched compared to barren pens. The D × L × M pigs showed lower cooking loss compared with the D × L × LW pigs. Moreover, the D × L × M pigs exhibited poor growth performance but had a better water-holding capacity. Only carcase traits and meat quality interaction effects were observed. We concluded that an enriched environment can reduce preslaughter stress and improve the growth performance of pigs and modulate the fatty acid composition of pork products.
Numerical simulations have been conducted to identify the dominant mechanism responsible for driving secondary flow motions in horizontal particle-laden pipe flows, based on an analysis of the forces acting on each phase. A four-way coupling Euler–Lagrangian approach was employed, using direct numerical simulations for the gas phase and Lagrangian particle tracking to account for the drag, gravitational and lift forces, together with the interactions that occur for both particle–wall and inter-particle collisions. The four different flow regimes, which had been identified previously as depending on various combinations of flow parameters and are characterised by the secondary flow structures of both the fluid and particle phases, were identified via varying the mass loading alone from $\varPhi _m=0.4$ to $\varPhi _m=1.8$. The distribution of the divergence of Reynolds stresses was used to help characterise the classes of the secondary fluid flow. This shows that secondary fluid flows of both the first and second kinds can either exist separately or co-exist in such flows. The forces exerted on the fluid phase by the pressure gradient and fluid–particle interactions were examined qualitatively and quantitatively to identify their contribution to the secondary fluid flow motions. A similar study was also applied to the drag, lift and gravitational forces exerted on the particle phase for the secondary particle flow motions. These were found to explain the secondary flows of both the fluid and particle phases with regard to both the flow direction and magnitude, together with the interaction between the two phases.
Mental health regional differences during pregnancy through the COVID-19 pandemic is understudied.
Objectives
We aimed to quantify the impact of the COVID-19 pandemic on maternal mental health during pregnancy.
Methods
A cohort study with a web-based recruitment strategy and electronic data collection was initiated in 06/2020. Although Canadian women, >18 years were primarily targeted, pregnant women worldwide were eligible. The current analysis includes data on women enrolled 06/2020-11/2020. Self-reported data included mental health measures (Edinburgh Perinatal Depression Scale (EPDS), Generalized Anxiety Disorders (GAD-7)), stress. We compared maternal mental health stratifying on country/continents of residence, and identified determinants of mental health using multivariable regression models.
Results
Of 2,109 pregnant women recruited, 1,932 were from Canada, 48 the United States (US), 73 Europe, 35 Africa, and 21 Asia/Oceania. Mean depressive symptom scores were lower in Canada (EPDS 8.2, SD 5.2) compared to the US (EPDS 10.5, SD 4.8) and Europe (EPDS 10.4, SD 6.5) (p<0.05), regardless of being infected or not. Maternal anxiety, stress, decreased income and access to health care due to the pandemic were increasing maternal depression. The prevalence of severe anxiety was similar across country/continents. Maternal depression, stress, and earlier recruitment during the pandemic (June/July) were associated with increased maternal anxiety.
Conclusions
In this first international study on the impact of the COVID-19 pandemic, CONCEPTION has shown significant country/continent-specific variations in depressive symptoms during pregnancy, whereas severe anxiety was similar regardless of place of residence. Strategies are needed to reduce COVID-19’s mental health burden in pregnancy.
We present a decomposition of the streamwise fluid force for in-line vortex-induced vibration (VIV) to provide insight into how the wake drag acts as a driving force in fluid–structure interaction. This force decomposition is an extension of that proposed in the recent work of Konstantinidis et al. (J. Fluid Mech., vol. 907, 2021, p. A34), and is applied to and validated by our experiments examining a circular cylinder freely vibrating in line with the free stream. It is revealed from the decomposition and linear analysis that two regimes of significant vibration are in phase synchronisation, while they are separated by a desynchronised regime marked by competition between non-stationary frequency responses of the cylinder vibration and the vortex shedding. Of interest, such a near-resonance desynchronisation regime is not seen in the transverse vibration case.
The incidence of scarlet fever has increased dramatically in recent years in Chongqing, China, but there has no effective method to forecast it. This study aimed to develop a forecasting model of the incidence of scarlet fever using a seasonal autoregressive integrated moving average (SARIMA) model. Monthly scarlet fever data between 2011 and 2019 in Chongqing, China were retrieved from the Notifiable Infectious Disease Surveillance System. From 2011 to 2019, a total of 5073 scarlet fever cases were reported in Chongqing, the male-to-female ratio was 1.44:1, children aged 3–9 years old accounted for 81.86% of the cases, while 42.70 and 42.58% of the reported cases were students and kindergarten children, respectively. The data from 2011 to 2018 were used to fit a SARIMA model and data in 2019 were used to validate the model. The normalised Bayesian information criterion (BIC), the coefficient of determination (R2) and the root mean squared error (RMSE) were used to evaluate the goodness-of-fit of the fitted model. The optimal SARIMA model was identified as (3, 1, 3) (3, 1, 0)12. The RMSE and mean absolute per cent error (MAPE) were used to assess the accuracy of the model. The RMSE and MAPE of the predicted values were 19.40 and 0.25 respectively, indicating that the predicted values matched the observed values reasonably well. Taken together, the SARIMA model could be employed to forecast scarlet fever incidence trend, providing support for scarlet fever control and prevention.
Understanding the size of oil droplets released from a jet in crossflow is crucial for estimating the trajectory of hydrocarbons and the rates of oil biodegradation/dissolution in the water column. We present experimental results of an oil jet with a jet-to-crossflow velocity ratio of 9.3. The oil was released from a vertical pipe 25 mm in diameter with a Reynolds number of 25 000. We measured the size of oil droplets near the top and bottom boundaries of the plume using shadowgraph cameras and we also filmed the whole plume. In parallel, we developed a multifluid large eddy simulation model to simulate the plume and coupled it with our VDROP population balance model to compute the local droplet size. We accounted for the slip velocity of oil droplets in the momentum equation and in the volume fraction equation of oil through the local, mass-weighted average droplet rise velocity. The top and bottom boundaries of the plume were captured well in the simulation. Larger droplets shaped the upper boundary of the plume, and the mean droplet size increased with elevation across the plume, most likely due to the individual rise velocity of droplets. At the same elevation across the plume, the droplet size was smaller at the centre axis as compared with the side boundaries of the plume due to the formation of the counter-rotating vortex pair, which induced upward velocity at the centre axis and downward velocity near the sides of the plume.