We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Syncope is common among pediatric patients and is rarely pathologic. The mechanisms for symptoms during exercise are less well understood than the resting mechanisms. Additionally, inert gas rebreathing analysis, a non-invasive examination of haemodynamics including cardiac output, has not previously been studied in youth with neurocardiogenic syncope.
Methods:
This was a retrospective (2017–2023), single-center cohort study in pediatric patients ≤ 21 years with prior peri-exertional syncope evaluated with echocardiography and cardiopulmonary exercise testing with inert gas rebreathing analysis performed on the same day. Patients with and without symptoms during or immediately following exercise were noted.
Results:
Of the 101 patients (15.2 ± 2.3 years; 31% male), there were 22 patients with symptoms during exercise testing or recovery. Resting echocardiography stroke volume correlated with resting (r = 0.53, p < 0.0001) and peak stroke volume (r = 0.32, p = 0.009) by inert gas rebreathing and with peak oxygen pulse (r = 0.61, p < 0.0001). Patients with syncopal symptoms peri-exercise had lower left ventricular end-diastolic volume (Z-score –1.2 ± 1.3 vs. –0.36 ± 1.3, p = 0.01) and end-systolic volume (Z-score –1.0 ± 1.4 vs. −0.1 ± 1.1, p = 0.001) by echocardiography, lower percent predicted peak oxygen pulse during exercise (95.5 ± 14.0 vs. 104.6 ± 18.5%, p = 0.04), and slower post-exercise heart rate recovery (31.0 ± 12.7 vs. 37.8 ± 13.2 bpm, p = 0.03).
Discussion:
Among youth with a history of peri-exertional syncope, those who become syncopal with exercise testing have lower left ventricular volumes at rest, decreased peak oxygen pulse, and slower heart rate recovery after exercise than those who remain asymptomatic. Peak oxygen pulse and resting stroke volume on inert gas rebreathing are associated with stroke volume on echocardiogram.
Calving glaciers respond quickly to atmospheric variability through ice dynamic adjustment. Particularly, single weather extremes may cause changes in ice-flow velocity and terminus position. Occasionally, this can lead to substantial event-driven mass loss at the ice front. We examine changes in terminus position, ice-flow velocity, and calving flux at the grounded lacustrine Schiaparelli Glacier in the Cordillera Darwin using geo-referenced time-lapse camera images and remote sensing data (Sentinel-1) from 2015 to 2022. Lake-level records, lake discharge measurements, and a coupled energy and mass balance model provide insight into the subglacial water discharge. We use downscaled reanalysis data (ERA5) to identify climate extremes and track land-falling atmospheric rivers to investigate the ice-dynamic response on possible atmospheric drivers.
Meltwater controls seasonal variations in ice-flow velocity, with an efficient subglacial drainage system developing during the warm season and propagating up-glacier. Calving accounts for 4.2% of the ice loss. Throughout the year, warm spells, wet spells, and landfalling atmospheric rivers promote calving. The progressive thinning of the ice destabilizes the terminus position, highlighting the positive feedback between glacier thinning, near-terminus ice-flow acceleration, and calving flux.
Stable water isotope records of six firn cores retrieved from two adjacent plateaus on the northern Antarctic Peninsula between 2014 and 2016 are presented and investigated for their connections with firn-core glacio-chemical data, meteorological records and modelling results. Average annual accumulation rates of 2500 kg m−2 a−1 largely reduce the modification of isotopic signals in the snowpack by post-depositional processes, allowing excellent signal preservation in space and time. Comparison of firn-core and ECHAM6-wiso modelled δ18O and d-excess records reveals a large agreement on annual and sub-annual scales, suggesting firn-core stable water isotopes to be representative of specific synoptic situations. The six firn cores exhibit highly similar isotopic patterns in the overlapping period (2013), which seem to be related to temporal changes in moisture sources rather than local near-surface air temperatures. Backward trajectories calculated with the HYSPLIT model suggest that prominent δ18O minima in 2013 associated with elevated sea salt concentrations are related to long-range moisture transport dominated by westerly winds during positive SAM phases. In contrast, a broad δ18O maximum in the same year accompanied by increased concentrations of black carbon and mineral dust corresponds to the advection of more locally derived moisture with northerly flow components (South America) when the SAM is negative.
The complex topography and size of High Mountain Asia (HMA) result in large differences in glacier mass-balance variability and climate sensitivity. Current understanding of these sensitivities is limited by simplifications in past studies’ model structure. This study overcomes this limitation by using a mass-balance model to investigate the climatic mass-balance variability and climate sensitivity of 16 glaciers covering major mountain ranges in HMA. Generally, glaciers in the southeast have higher mass turnover while glaciers at the margins of HMA show higher interannual mass-balance variability. All glaciers are most sensitive to temperature perturbations in summer. The climatic mass balance of 15 glaciers is most sensitive to precipitation perturbations in summer or spring and summer, even if the seasonal accumulation peak is not in summer. Only one glacier's mass balance (Chhota Shigri Glacier) is most sensitive to precipitation perturbations in winter. Glaciers with high mass turnover and high summer-precipitation ratio are more sensitive to temperature perturbations. Sensitivity experiments reveal that besides the non-linearity of mass-balance temperature sensitivity, mass-balance precipitation sensitivity is non-linear as well. Furthermore, resolving the diurnal cycle of albedo, (re)freezing and the differentiation between liquid and solid precipitation are important to assess climate sensitivity of glaciers in HMA.
Ban the Box (BTB) laws are an anti-discrimination policy intended to promote employment for persons with criminal records. However, research on law and organizations shows that firms often fail to comply with legal directives or engage in symbolic compliance that fails to alter day-to-day business practices. We consider whether BTB contributed to attitudinal or behavioral shifts among hiring managers and changes in job applications. We analyze a unique set of in-depth interviews (N = 30) and entry-level job applications (N = 305) collected from the same workplaces in 2008 and 2016, assessing the impact of state BTB legislation. We find: (1) that one in five organizations were noncompliant, with noncompliance twice as likely among employers who discriminated against applicants with criminal records pre-BTB and that widespread lack of knowledge and lack of enforcement of BTB appears to affect noncompliance; (2) organizations maintained considerable continuity in hiring practices and attitudes between 2008 and 2016, regardless of personnel changes and statewide implementation of BTB; and (3) post-BTB, strong warnings about criminal background checks at later stages of the hiring process emerged as an alternative source of gatekeeping. These findings contribute to the law and organizations literature by highlighting the importance of enforcement and limits of law for combating discrimination.
The Saks Institute for Mental Health Law, Policy, and Ethics at USC Gould School of Law is engaged in an innovation planning project in California to pilot programs and test the feasibility of using psychiatric advance directives (PADs) within the supported decision-making (SDM) paradigm. The project is supported by California’s Mental Health Services Oversight and Accountability Commission. This chapter provides an overview of the preliminary developments and pilot studies in the California PADs/SDM project. The project is a first-of-its-kind effort to explore the efficacy of the PADs/SDM paradigm across behavioral health county systems in the State of California. This chapter presents an overview of the pilot project and describes its research questions and implications, and ways in which the project and SDM paradigm embodies the principles of the United Nations Convention on the Rights of Persons with Disabilities.
Dietary patterns influence gut microbiota composition. To date, there has not been an assessment of diet and gut microbiota in Veterans, who have a history of unique environmental exposures, including military deployment, that may influence associations between diet and gut microbiota. Our aim was to characterise Veteran habitual dietary intake and quality, and to evaluate correlations between diet and gut microbiota. We administered Food Frequency Questionnaires (FFQs) and collected stool samples from 330 Veterans. FFQ data were used to generate Healthy Eating Indices (HEI) of dietary quality. Exploratory factor analysis was used to identify two dietary patterns we defined as “Western” and “Prudent.” Stool samples underwent 16S rRNA gene sequencing, and the resulting data were used to evaluate associations with dietary variables/indices. Analyses included linear regression of α-diversity, constrained analysis of principal coordinates of β-diversity, and multivariate association with linear models and Analysis of Composition of Microbiomes analyses of dietary factors and phylum- and genus-level taxa. There were no significant associations between dietary patterns or factors and α- or β-diversity. At the phylum level, increasing HEI scores were inversely associated with relative abundance of Actinobacteria, and added sugar was inversely associated with abundance of Verrucomicrobia. Veterans largely consumed a Western-style diet, characterised by poor adherence to nutritional guidelines.
Bedrock overdeepenings exposed by continued glacial retreat can store precipitation and meltwater, potentially leading to the formation of new proglacial lakes. These lakes may pose threats of glacial lake outburst floods (GLOFs) in high mountain areas, particularly if new lakes form in geomorphological setups prone to triggering events such as landslides or moraine collapses. We present the first complete inventory for future glacial lakes in High Mountain Asia by computing the subglacial bedrock for ~100 000 glaciers and estimating overdeepening area, volume and impact hazard for the larger potential lakes. We detect 25 285 overdeepenings larger than 104 m2 with a volume of 99.1 ± 28.6 km3 covering an area of 2683 ± 773.8 km2. For the 2700 overdeepenings larger than 105 m2, we assess the lake predisposition for mass-movement impacts that could trigger a GLOF by estimating the hazard of material detaching from surrounding slopes. Our findings indicate a shift in lake area, volume and GLOF hazard from the southwestern Himalayan region toward the Karakoram. The results of this study can be used for anticipating emerging threats and potentials connected to glacial lakes and as a basis for further studies at suspected GLOF hazard hotspots.
This article emerged as the human species collectively have been experiencing the worst global pandemic in a century. With a long view of the ecological, economic, social, and political factors that promote the emergence and spread of infectious disease, archaeologists are well positioned to examine the antecedents of the present crisis. In this article, we bring together a variety of perspectives on the issues surrounding the emergence, spread, and effects of disease in both the Americas and Afro-Eurasian contexts. Recognizing that human populations most severely impacted by COVID-19 are typically descendants of marginalized groups, we investigate pre- and postcontact disease vectors among Indigenous and Black communities in North America, outlining the systemic impacts of diseases and the conditions that exacerbate their spread. We look at how material culture both reflects and changes as a result of social transformations brought about by disease, the insights that paleopathology provides about the ancient human condition, and the impacts of ancient globalization on the spread of disease worldwide. By understanding the differential effects of past epidemics on diverse communities and contributing to more equitable sociopolitical agendas, archaeology can play a key role in helping to pursue a more just future.
Bipolar disorder (BD) is linked to circadian rhythm disruptions resulting in aberrant motor activity patterns. We aimed to explore whether motor activity alone, as assessed by longitudinal actigraphy, can be used to classify accurately BD patients and healthy controls (HCs) into their respective groups.
Methods
Ninety-day actigraphy records from 25 interepisode BD patients (ie, Montgomery–Asberg Depression Rating Scale (MADRS) and Young Mania Rating Scale (YMRS) < 15) and 25 sex- and age-matched HCs were used in order to identify latent actigraphic biomarkers capable of discriminating between BD patients and HCs. Mean values and time variations of a set of standard actigraphy features were analyzed and further validated using the random forest classifier.
Results
Using all actigraphy features, this method correctly assigned 88% (sensitivity = 85%, specificity = 91%) of BD patients and HCs to their respective group. The classification success may be confounded by differences in employment between BD patients and HCs. When motor activity features resistant to the employment status were used (the strongest feature being time variation of intradaily variability, Cohen’s d = 1.33), 79% of the subjects (sensitivity = 76%, specificity = 81%) were correctly classified.
Conclusion
A machine-learning actigraphy-based model was capable of distinguishing between interepisode BD patients and HCs solely on the basis of motor activity. The classification remained valid even when features influenced by employment status were omitted. The findings suggest that temporal variability of actigraphic parameters may provide discriminative power for differentiating between BD patients and HCs while being less affected by employment status.
Although passive occupational exoskeletons alleviate worker physical stresses in demanding postures (e.g., overhead work), they are unsuitable in many other applications because of their lack of flexibility. Active exoskeletons that are able to dynamically adjust the delivered support are required. However, the automatic control of support provided by the exoskeleton is still a largely unsolved challenge in many applications, especially for upper limb occupational exoskeletons, where no practical and reliable approach exists. For this type of exoskeletons, a novel support control approach for lifting and carrying activities is presented here. As an initial step towards a full-fledged automatic support control (ASC), the present article focusses on the functionality of estimating the onset of user’s demand for support. In this way, intuitive behavior should be made possible. The combination of movement and muscle activation signals of the upper limbs is expected to enable high reliability, cost efficiency, and compatibility for use in industrial applications. The functionality consists of two parts: a preprocessing—the motion interpretation—and the support detection itself. Both parts were trained with different subjects, who had to move objects. The functionality was validated both in the cases of (A) an unknown subject performing known tasks and (B) a known subject performing unknown tasks. The functionality showed sound results as it achieved a high accuracy ($$ 95\% $$) in training. In addition, the first validation results showed that this functionality is useful for integration in an appropriately adapted ASC and can then enable comfortable working.
When people interact, aspects of their speech and language patterns often converge in interactions involving one or more languages. Most studies of speech convergence in conversations have examined monolingual interactions, whereas most studies of bilingual speech convergence have examined spoken responses to prompts. However, it is not uncommon in multilingual communities to converse in two languages, where each speaker primarily produces only one of the two languages. The present study examined complexity matching and lexical matching as two measures of speech convergence in conversations spoken in English, Spanish, or both languages. Complexity matching measured convergence in the hierarchical timing of speech, and lexical matching measured convergence in the frequency distributions of lemmas produced. Both types of matching were found equally in all three language conditions. Taken together, the results indicate that convergence is robust to monolingual and bilingual interactions because it stems from basic mechanisms of coordination and communication.
Southern Iceland is one of the main outlets of the Icelandic ice sheet and is subject to seismicity of both tectonic and volcanic origins along the South Iceland Seismic Zone (SISZ). A sedimentary complex spanning Marine Isotopic Stage 6 (MIS 6) to the present includes evidence of both activities. It includes a continuous sedimentary record since the Eemian interglacial period, controlled by a rapid deglaciation, followed by two marine glacioisostasy-forced transgressions, separated by a regression phase connected to an intra-MIS 5e glacial advance. This record has been constrained by tephrostratigraphy and dating. Analysis of this record has provided better insights into the interconnectedness of hydrology and volcanic and tectonic activity during deglaciations and glaciations. Low-intensity earthquakes recurrently affected the water-laid sedimentation during the early stages of unloading, accompanying rifting events, dyke injection, and fault reactivations. During full interglacial periods, earthquakes were significantly less frequent but of higher magnitude along the SISZ, due to stress accumulation, favored by low groundwater levels and more limited magma production. Occurrence of volcanism and seismicity in Iceland is commonly related to rifting events. Subglacial volcanic events seem moreover to have been related to stress unlocking related to limited or full unloading/deglaciation events. Major eruptions were mostly located at the melting margin of the ice sheet.
Physical activity (PA) may be therapeutic for people with severe mental illness (SMI) who generally have low PA and experience numerous life style-related medical complications. We conducted a meta-review of PA interventions and their impact on health outcomes for people with SMI, including schizophrenia-spectrum disorders, major depressive disorder (MDD) and bipolar disorder. We searched major electronic databases until January 2018 for systematic reviews with/without meta-analysis that investigated PA for any SMI. We rated the quality of studies with the AMSTAR tool, grading the quality of evidence, and identifying gaps, future research needs and clinical practice recommendations. For MDD, consistent evidence indicated that PA can improve depressive symptoms versus control conditions, with effects comparable to those of antidepressants and psychotherapy. PA can also improve cardiorespiratory fitness and quality of life in people with MDD, although the impact on physical health outcomes was limited. There were no differences in adverse events versus control conditions. For MDD, larger effect sizes were seen when PA was delivered at moderate-vigorous intensity and supervised by an exercise specialist. For schizophrenia-spectrum disorders, evidence indicates that aerobic PA can reduce psychiatric symptoms, improves cognition and various subdomains, cardiorespiratory fitness, whilst evidence for the impact on anthropometric measures was inconsistent. There was a paucity of studies investigating PA in bipolar disorder, precluding any definitive recommendations. No cost effectiveness analyses in any SMI condition were identified. We make multiple recommendations to fill existing research gaps and increase the use of PA in routine clinical care aimed at improving psychiatric and medical outcomes.
The pre-last glacial maximum paleolake sediments at Baumkirchen, western Austria, are well known in Alpine Quaternary stratigraphy as being the type locality of the Middle to Upper Würmian transition. Their location provides a rare opportunity to investigate the vegetation history of the interior of the Alps during the last glacial cycle. A recent renewed research effort involving new drilling revealed a 250-m-thick lacustrine sequence with an older, ca. Marine Oxygen Isotope Stage (MIS) 4 phase and a younger, mid- to late MIS 3 phase. Pollen analysis reveals generally poor preservation and very low pollen concentration due to very high sedimentation rates. On the basis of pollen percentages and influx rates, six pollen zones (PZ) were assigned. PZ1 and 2 correspond to the entire ca. MIS 4 section and are characterized by only scattered vegetation representing an extremely cold and dry climate. Two stadials and two interstadials were identified in the MIS 3 section. The interstadials are characterized by well-developed open vegetation with some stands of trees, with the upper PZ6 being better developed but still forest-free. On the basis of previous radiocarbon dating, this zone (PZ6) is correlated to Greenland Interstadial (GI) 7 and the lower interstadial (PZ4) tentatively to GI 8.
The characteristics of summer energy budgets in the ablation zones during the summer at the surface of two glaciers in the Antarctic Peninsula are investigated and compared to the findings of previous studies. The study areas are located on King George Island (62° S) and in Marguerite Bay (68° S). The summer energy balance was computed from automatic weather station data. The results reveal that turbulent heat fluxes dominate over radiation balance in Marguerite Bay whereas on King George Island ablation is driven by net radiation. The summer energy balance on King George Island reflects the more maritime subpolar climate along the northwest tip of the peninsula in contrast to a more continentally toned polar climate in Marguerite Bay and areas further south. The terms of the energy balances are partitioned very differently but ad-vection from northerly directions causes the highest summer snowmelt rates at both study sites. It is concluded that sensitivity studies should consider not only the mean air-temperature increase, but also possible changes in other climate parameters.
Shallow ice cores were obtained from widely distributed sites across the West Antarctic ice sheet, as part of the United States portion of the International Trans-Antarctic Scientific Expedition (US ITASE) program. The US ITASE cores have been dated by annual-layer counting, primarily through the identification of summer peaks in non-sea-salt sulfate (nssSO42–) concentration. Absolute dating accuracy of better than 2 years and relative dating accuracy better than 1 year is demonstrated by the identification of multiple volcanic marker horizons in each of the cores, Tambora, Indonesia (1815), being the most prominent. Independent validation is provided by the tracing of isochronal layers from site to site using high-frequency ice-penetrating radar observations, and by the timing of mid-winter warming events in stable-isotope ratios, which demonstrate significantly better than 1 year accuracy in the last 20 years. Dating precision to ±1 month is demonstrated by the occurrence of summer nitrate peaks and stable-isotope ratios in phase with nssSO42–, and winter-time sea-salt peaks out of phase, with phase variation of <1 month. Dating precision and accuracy are uniform with depth, for at least the last 100 years.
A glacier inventory for península Córdova, isla Riesco, Chilean Patagonia (53°14’ S, 73°00’W), has been compiled based on stereoscopic interpretation of aerial photographs of March and December 1984 and 1:100 000 topographic maps. Three small icefields comprising 33 glacier outlets, in addition to 12 small separate glaciers, have been identified, with a total area of 57 km2. Glaciers are located on mountain peaks with a maximum altitude of 1183 mand a lowermost elevation of 100 m. All glaciers terminate on land, except for three glaciers calving into small fresh-water lakes. A Landsat Thematic Mapper (TM) image of 6 October 1986 has been rectified and analyzed using a supervised classification to estimate snow- and glacier-covered surfaces. Glacier-area data derived from satellite-image analyses have been adjusted at península Córdova using photo-interpreted data, and extrapolated to estimate a glacier area of 215 ±40km2 for all of isla Riesco. The presence of trimlines and moraines beyond the present position of the glaciers indicates a generalized retreat from a maximum neoglacial position at península Córdova, most probably as a result of regional warming and precipitation decrease observed during the last century.
A degree-day model extended for surface mass-balance calculations has been applied to derive the sensitivity of Gran Campo Nevado ice cap (GCN), southwest Patagonia, to climate change. Seasonal sensitivity characteristics were computed using automatic weather station data gathered in the period 2000–05. Results indicate pronounced mass-balance sensitivity to temperature during the summer, with monthly values of –0.27±0.01mw.e. K–1. Monthly sensitivity to a 10% precipitation perturbation fluctuates around +0.03mw.e The sensitivity characteristics obtained were used to model the surface mass-balance evolution of GCN during the 20th and 21 st centuries based on monthly means of air temperature and precipitation derived from bias-corrected weather station data and statistically downscaled re-analysis and general climate model data. Surface mass balance shows a persistently negative trend ranging from around +1mw.e. a–1 at the beginning of the 20th century down to almost –1.5mw.e. a–1 during the first years of the 21st century, with only a few positive years occurring occasionally during the second half of the 20th century. The scenario for the end of the 21 st century totals approximately –4.5mw.e. a–1, i.e. an estimated ice volume loss for GCN of 59 km3 during 1900–2099.