We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Eastern Ghats Belt (EGB) has been extensively studied by the geoscientific community; however, this communication reports unique mineral assemblages that have not been documented previously. This study documents the occurrence of sapphirine, spinel, orthopyroxene, sodic-gedrite, calcic-amphibole, biotite and plagioclase assemblage indicating in ultrahigh temperature (UHT) metamorphic conditions. The significance of this study lies in the peculiarity of sapphirine being present within anorthite matrix which has been reported for the first time from the Indian subcontinent. The studied assemblage has been correlated with the more or less similar assemblage of rock called ‘Sakenites’ reported from southern Madagascar to correlate the most probable source rock ‘anorthosites’ that underwent metamorphic transformations and led to the unique UHT mineral assemblage. The Na-rich gedrite identified within the assemblage represents a relict mineral indicative of high-grade amphibolite-facies metamorphism. The derived pressure–temperature (P-T) trajectory reveals a decompression path with almost uniformly decreasing P-T conditions in contrast to the commonly reported isothermal decompression (ITD) path from various other domains and provinces of the EGB. The corresponding retrograde assemblage has been recalibrated by the sequential removal of sapphirine and corroborated with T-X (H2O) constraints.
The analyzed EMP U-Th-Pb monazite chemical age constraints suggest mesoproterozoic to neoproterozoic episodes corresponding to a pair of ∼959 Ma and ∼846 Ma thermal events. These metamorphic events have been correlated to reconstructing the Rodinian supercontinent at ∼959 Ma and the initiation of its subsequent break-up at ∼846 Ma.
A numerical study is presented on flow-induced vibration of a circular cylinder, under the effect of a downstream stationary cylinder-induced proximity interference. The interference-induced various types of gap-flow regimes and characteristics of vibration and gap-flow rate $Q^*_g$ are presented, by considering various non-dimensional gaps $G^* = 0.1{-}2.5$ and reduced velocities $U^* = 3{-}20$ at a constant Reynolds number $Re = 100$, mass ratio $m^*= 2$ and damping ratio $\zeta = 0.005$. Decreasing $G^*$ or increasing proximity leads to the four gap-flow regimes: bi-directional gap flow at $G^* \geqslant 1.0$, uni-directional non-orthogonal gap flow at $G^* = 1.5{-}1.0$, uni-directional orthogonal gap flow at $G^* \leqslant 0.5$ and uni-directional one-sided gap flow at $G^* \leqslant 0.3$. Further, the respective regimes at larger $U^*$ are associated with proximity-induced modified vortex-induced vibration (PImVIV), proximity-induced galloping (PIG), transitional PImVIV–PIG, and proximity-induced staggered vibration (PISV). Quantitative presentation of maximum gap-flow rate $Q^*_{{g,max}}$, phase $ \phi _g$ (between $Q^*_{g}$ and displacement $y^*$) and phase portraits ($Q^*_{g}$ versus $y^*$) provides clear demarcation between the various gap-flow regimes. Flow mechanisms are presented for the PImVIV, PIG and PISV responses. For the PIG, the mechanism is presented for the first time on generation of galloping instability, asymptotically increasing $A^*$ and existence of optimum gap $G^* = 0.5$ for the maximum amplitude. This work is significant as it provides new insights into the proximity interference-induced gap-flow dynamics between two cylinders, associated flow mechanism for both vibration mitigation and enhancement and promising potential applications for energy harvesting.
With great fanfare, India officially launched its new criminal laws – the Bharatiya Nyaya Sanhita, the Bharatiya Nagarik Suraksha Sanhita and the Bharatiya Sakshya Adhiniyam – on 1 July 2024. These laws were heralded as a significant reform aimed at modernizing the country’s justice system and enhancing protections for victims of violence. The legislation sparked considerable optimism among various stakeholders by promising swift justice and fostering a more responsive police force. However, at six months after their implementation, a critical assessment was warranted. How effective have these laws proven to be in practice? Are the judiciary and police adapting to these changes, or are we merely witnessing another instance of legislative overreach that fails to translate into real-world improvements? This analysis urges us to examine the real impact of these statutes to assess whether they offer a genuine solution to the longstanding challenges within the Indian criminal justice system or if they are simply another bureaucratic illusion. As we examine the initial outcomes and responses from law enforcement and the judiciary, it is essential to evaluate the efficacy of the new provisions in the context of ongoing systemic challenges and societal attitudes toward justice. This evaluation will determine whether these legislative measures have genuinely ushered in a new era of accountability and victim support, or if they have fallen victim to the inertia of existing institutional practices. In this paper we examine the changes and effectiveness brought by these laws as we unchain ourselves from colonial laws.
The application of a tube combustion system (pyrolyzer) for the batch combustion of low carbon content environmental matrices, such as soil and sediment, for determining 14C specific activity is examined. The samples were combusted at 600°C, and the CO2 species produced were trapped in 3N NaOH, precipitated as BaCO3 by adding BaCl2, and subjected to acid-hydrolysis to transfer the CO2 species to the absorber-scintillator mixture for liquid scintillation counting (LSC). The method was validated by analyzing the samples by accelerator mass spectrometry (AMS) method. The minimum detectable activity (MDA) for the method, at 2σ confidence level, was 10 Bq kg–1C (4 pMC) for a counting time of 500 min and 7 Bq kg–1C (3 pMC) for 1000 min. The capability of the method to quantify a small excess of 14C specific activity (a few Bq kg–1C or pMC) in the environment of a nuclear facility, when compared to the ambient natural background level, was demonstrated by analyzing a total of 23 soil and 7 sediment samples from the vicinity of a pressurized heavy water reactor (PHWR) nuclear power plant (NPP) at Kaiga, India. The maximum excess 14C specific activity values recorded for soil and sediment matrices were 37 ± 7 Bq kg–1C and 11 ± 7 Bq kg–1C, respectively, confirming minimal radioecological impact of the operation of the NPP on the environment. The 14C specific activity ratio for the recently fallen leaf litter and the soil underneath at most of the sampling points in the vicinity of the NPP had a mean value of 1.03 with an associated standard deviation of 0.07. Statistical tests confirm that the mean values of the data set of 14C specific activity of leaf litter and underlying soil are not significantly different.
We present a study on the solitons in strongly coupled Yukawa fluids using a simple fluid model (SFE), supplemented by an appropriate equation of state for the medium. The formulation covers a broad range of coupling ($\Gamma$) and screening ($\kappa$) parameters, showing an agreement with the nonlinear quasilocalized charged approximation and generalized hydrodynamic models in the weak screening regime of the solitons in Yukawa media. The results also show a quantitative agreement with the experimentally measured values of the width and Mach number with the normalized amplitude. It has also been observed that the amplitude and width of the soliton in the weak screening limit increase with $\Gamma$ up to $\Gamma \sim 10$, beyond which they remain independent of $\Gamma$ values. Molecular dynamics simulations also confirm that the localization begins to emerge beyond $\Gamma \sim 10$, showing no significant effects on the characteristics of the solitons in Yukawa media. Therefore, the SFE model is capable of predicting the impact of the onset of the localization on the solitons in Yukawa media. Additionally, the amplitude of the soliton increases while its width decreases with $\kappa$ values. The SFE model also explores the possibility of forming refractive soliton structures, whose intensity increases with $\kappa$ values and decreases with $\Gamma$ values.
The mass balance of lake-terminating glaciers responds to annual atmospheric variations, while calving-induced ice loss at the front is driven by local ice–water interactions. The current glaciological studies underestimate glacier response by neglecting the significant annual ice loss at the terminus through calving processes. This study integrates field measurements with remote sensing data to investigate the glaciological characteristics and proglacial lake evolution of the Gepang Gath glacier in the Chandra basin, Western Himalaya, India. Long-term observations reveal a continuous expansion of the proglacial lake from 0.21 ± 0.06 km2 (1962) to 1.21 ± 0.05 km2 (2023), along with terminus retreat of ∼2.76 km, attributed to calving at the ice–water interface. The glacier’s surface exhibits complex debris cover, with thicknesses up to 35 cm, creating significant spatial variations in surface mass balance. In-situ, glaciological measurements reveal a highly negative glacier-wide mass balance of −0.90 ± 0.30 m w.e. a−1 between the years 2014 and 2023. The geodetic estimates also reveal a negative mass balance of −0.61 ± 0.1 m w.e. a−1 over the past decade (2013–2023). The frontal area change (0.42 km2) and geodetic mass balance show a total volumetric ice loss of −21.77 × 106 m3 w.e. during the same period. Overall, the yearly frontal ice loss exacerbates the mass loss by 17–22%. These findings suggest that the presence of proglacial lakes plays a significant role in intensifying ice mass loss from Himalayan glaciers, strongly regulating their overall evolution.
Glacier and snow melt are the primary sources of water for streams, and rivers in upper Indus region of the western Himalaya. However, the magnitude of runoff from this glacierized basin is expected to vary with the available energy in the catchment. Here, we used a physically based energy balance model to estimate the surface energy and surface mass balance (SMB) of the upper Chandra Basin glaciers for 7 hydrological years from 2015 to 2022. A strong seasonality is observed, with net radiation being the dominant energy flux in the summer, while latent and sensible heat flux dominated in the winter. The estimated mean annual SMB of the upper Chandra Basin glaciers is −0.51 ± 0.28 m w.e. a−1, with a cumulative SMB of −3.54 m w.e during 7 years from 2015 to 2022. We find that the geographical factors like aspect, slope, size and elevation of the glacier contribute towards the spatial variability of SMB within the study region. The findings reveal that a 42% increase in precipitation is necessary to counteract the additional mass loss resulting from a 1°C increase in air temperature for the upper Chandra Basin glaciers.
In 2023, Bangladesh experienced its largest and deadliest outbreak of the Dengue virus (DENV), reporting the highest-ever recorded annual cases and deaths. Historically, most of the cases were recorded in the capital city, Dhaka. We aimed to characterize the geographical transmission of DENV in Bangladesh. From 1 January–31 December 2023, we extracted and analyzed daily data on dengue cases and deaths from the Management Information System of the Ministry of Health and Family Welfare. We performed a generalized linear mixed model to identify the associations between division-wise daily dengue counts and various geographical and meteorological covariates. The number of dengue cases reported in 2023 was 1.3 times higher than the total number recorded in the past 23 years (321,179 vs. 244,246), with twice as many deaths than the total fatalities recorded over the past 23 years (1705 vs. 849). Of the 1,705 deaths in 2023, 67.4% (n = 1,015) died within one day after hospital admission. The divisions southern to Dhaka had a higher dengue incidence/1000 population (2.30 vs. 0.50, p <0.01) than the northern divisions. Festival-related travel along with meteorological factors and urbanization are likely to have contributed to the shift of dengue from Dhaka to different districts in Bangladesh.
To investigate the demographic determinants influencing nursing students’ intentions to volunteer during health emergencies in India, providing insights that can inform policy and educational interventions to enhance their engagement and effectiveness in crisis situations.
Methods
A comprehensive cross-sectional survey was conducted among final-year nursing students, utilizing an online self-administered questionnaire developed through an extensive review of existing literature. The collected data were analyzed using the SPSS software tool.
Results
Four hundred nursing students participated in the study. The analysis showed that age, marital status, location, family income, educational program, and district strongly influence volunteer inclinations. Although they face challenges, nursing students’ desire to help during emergencies shows their dedication and importance within health care. Strategic assistance, flexible training, and recognition can increase volunteerism. Giving nursing students resources and support makes them confident, equipped, and motivated to respond to emergencies, improving community resilience and emergency health care.
Conclusions
This study enhances our understanding of demographic influences on volunteerism and informs strategies to foster a more robust and willing nursing workforce in India for future health emergencies. Future research should focus on understanding psychological factors in other states of India.
Residual blood specimens provide a sample repository that could be analyzed to estimate and track changes in seroprevalence with fewer resources than household-based surveys. We conducted parallel facility and community-based cross-sectional serological surveys in two districts in India, Kanpur Nagar District, Uttar Pradesh, and Palghar District, Maharashtra, before and after a measles-rubella supplemental immunization activity (MR-SIA) from 2018 to 2019. Anonymized residual specimens from children 9 months to younger than 15 years of age were collected from public and private diagnostic laboratories and public hospitals and tested for IgG antibodies to measles and rubella viruses. Significant increases in seroprevalence were observed following the MR SIA using the facility-based specimens. Younger children whose specimens were tested at a public facility in Kanpur Nagar District had significantly lower rubella seroprevalence prior to the SIA compared to those attending a private hospital, but this difference was not observed following the SIA. Similar increases in rubella seroprevalence were observed in facility-based and community-based serosurveys following the MR SIA, but trends in measles seroprevalence were inconsistent between the two specimen sources. Despite challenges with representativeness and limited metadata, residual specimens can be useful in estimating seroprevalence and assessing trends through facility-based sentinel surveillance.
The study was conducted on indigenous Tharparkar cow (Bos indicus) to evaluate FSH stimulation on follicular attributes, oocyte recovery and morpho-molecular developmental competence parameters concerning oocyte quality. A total of 20 OPU sessions were performed, which included 10 sessions in each FSH stimulated at the dose of 130 µg divided into four sub-doses and non-stimulated. Findings on the size of follicles having ≥6 mm showed a significantly higher, however an opposite trend was observed in the case of smaller sized follicle (<6 mm) between stimulated and non-stimulated respectively. The stimulated cows had a significantly higher number as well as the percentage of oocytes of Grade A, having a diameter ≥120 µm and BCB+VE as compared to the non-stimulated cows. The relative mRNA expression profile of GDF9, BMP15, PCNA and BCL-2 genes was higher and BAX was lower in the FSH-stimulated cow. These results indicated that FSH stimulation before OPU in Bos indicus cows has a significant impact on follicle size, oocyte yield, recovery, and their quality with respect to COC’s, diameter and BCB+VE oocytes. Further, a significant increase in the relative mRNA expression levels of GDF9, BMP15 and PCNA genes in the FSH-stimulated group suggests that FSH plays a key role in modulating the expression of these important candidate genes and thus influencing oocyte quality. The higher mRNA expression of BCL-2 genes and concomitantly lower expression of BAX gene in FSH Stimulated cows indicates the protective role of these genes and preventing programmed cell death and thus promoting cell survival, quality and embryo development.
A knowledge, attitudes and control practices (KAP)-based study on ticks and tick-borne diseases (TTBD) and resistance development in ticks was conducted in Dhar district of Madhya Pradesh covering 200 livestock owners using a questionnaire. Based on our scoring criteria, results indicated only 25% (19.16–31.60) respondents possessing basic knowledge of TTBDs while 75% (68.40–80.84) respondents were not aware of TBDs. Due to lack of proper awareness of TTBDs, about 1.28 times more respondents (OR 95% CI 0.42–3.86) were having heavy tick infestations in their animals. However, about 36.5% (29.82–43.58) respondents showed a favourable attitude towards the adoption of different tick control practices; consequently, their animals showed low-level infestation. Amongst various feeding systems for animals, a mixed type of feeding system was mostly adopted by 57.5% respondents followed by manger system (37.5%) while grazing was the least adopted method (5%). Results indicated that the grazing animals were 6 times (OR 95% CI 2.93–12.28) more susceptible to ticks and possessed heavy tick infestation. Resistance status of collected tick isolates of Rhipicephalus microplus and Hyalomma anatolicum was assessed and revealed that both tick species were found resistant to deltamethrin. The goals of this study were to assess some of the underlying causes of ticks and TBD in livestock in Dhar district of Madhya Pradesh state using the KAP survey and resistance characterization of ticks.
There has been a steep rise in user-generated content on the Web and social media platforms during the last few years. While the ease of content creation allows anyone to create content, at the same time it is difficult to monitor and control the spread of detrimental content. Recent research in natural language processing and machine learning has shown some hope for the purpose. Approaches and methods are now being developed for the automatic flagging of problematic textual content, namely hate speech, cyberbullying, or fake news, though mostly for English language texts. This paper presents an algorithmic approach based on deep learning models for the detection of violent incidents from tweets in the Spanish language (binary classification) and categorizes them further into five classes – accident, homicide, theft, kidnapping, and none (multi-label classification). The performance is evaluated on the recently shared benchmark dataset, and it is found that the proposed approach outperforms the various deep learning models, with a weighted average precision, recall, and F1-score of 0.82, 0.81, and 0.80, respectively, for the binary classification. Similarly, for the multi-label classification, the proposed model reports weighted average precision, recall, and F1-score of 0.54, 0.79, and 0.64, respectively, which is also superior to the existing results reported in the literature. The study, thus, presents meaningful contribution to detection of violent incidents in Spanish language social media posts.
The present study aims to determine the chronology of the past settlement of the different archaeological sites of the Digaru–Kolong River valley (Assam-Meghalaya Foothills), India, based on accelerator mass spectrometry (AMS) 14C dates of seven charcoal samples, five potsherds, and five sediment samples. The archaeological record of the study area consists of ground and polished stone axes and adzes, pottery, and standing or buried megaliths. The samples analyzed were excavated from test pits, and an attempt has been made to correlate the findings with the chronology of the neighboring archaeological region. A site reported in the vicinity of the study area is primarily Neolithic. However, the results from our excavations indicate a time frame for the analyzed artifacts of ca. 240 CE to 1379 CE.
Twelve lacustrine sediment samples from a relict lake in the Kalla Glacier valley were co-dated using AMS radiocarbon (14C) and infrared stimulated luminescence (IRSL) dating methods. In general, the radiocarbon ages of bulk organic matter were older by a minimum of 1500 years compared to (age depth) modeled luminescence ages after fading corrections. This is observed for the first time in the lake sediments of High Himalayan Crystalline zone. A combination of lipid n-alkane data, Raman spectra and geochemical proxies suggested that this was due to ancient organic carbon (OCancient) that is a mixture of pre-aged (OCpre-aged) and petrogenic (OCpetro) organic carbon within older glacial moraine debris that served as sediment source to the lake. Raman spectra suggest the presence of moderate to highly graphitized OCpetro in all the profile samples. The OCpetro contributed 0.064 ± 0.032% to the sediment and the lake stored 2.5 ± 0.7 Gg OCpetro at variable rates during the last 16 kyr, with the mean burial flux 160 kg OCpetro yr−1. This study implies (1) employing another independent dating method in addition to radiocarbon method using bulk sediment organic matter, if the carbon content is low, to observe any discrepancy, and (2) a need to investigate on the fate of OCpetro as many such small lakes become relict in this region.
Natural resources such as soil and water are essential to agriculture, especially in arid and semi-arid rain-fed areas, yet the impacts of managing these crucial natural resources on farm technical efficiency are little known. Using data from 400 households with 1031 plots, we examined the impacts of soil and water conservation measures (SWCMs) on the technical efficiency of farmers in the semi-arid Bundelkhand (central India). We estimated stochastic production frontiers, considering potential self-selection bias stemming from both observable and unobservable factors in the adoption of SWCMs at the farm level. The farm technical efficiency for adopters of SWCMs ranged from 0.68 to 0.72, and that for non-adopters ranged from 0.52 to 0.65, depending on how biases were controlled for. As the average efficiency is consistently higher for adopter farmers than the control group, promoting SWCMs could help to increase input use efficiency, especially in resource-deprived rain-fed systems in the semi-arid tropics.
Low phosphorus use efficiency (PUE) is one of the abiotic factors that hamper yield and production potential in chickpea (Cicer arietinum L.). Higher yield coupled with improved PUE can make this crop more adaptive and competitive to wide cropland area, especially on marginal soils having low-level phosphorus (P). To identify chickpea germplasm lines that assimilate phosphorus more efficiently under P-deficient soils, 288 diverse genotypes of chickpea belonging to reference set were evaluated for yield component traits and PUE under field conditions for two consecutive years at two phosphorus levels (low P – no phosphorus application and high P – phosphorus application at 40 kg/ha). Based on 2-year evaluation of data under high and low P soil conditions, we identified strong correlations for traits like number of primary and secondary branches, number of pods, biological yield and seed yield indicating that these traits can be used as proxy traits for PUE. ICC 6571 was the best performing genotype under low P conditions while ICC 6579 yielded maximum under high P regime. We report 16 genotypes namely ICC 1052, ICC 1083, ICC 1098, ICC 1161, ICC 2072, ICC 4418, ICC 4567, ICC 4991, ICC 5504, ICC 5639, ICC 7413, ICC 8350, ICC 9590, ICC 9702, ICC 11584 and ICC 13357 as phosphorus use efficient genotypes based on their better performance for yield and yield-contributing traits under low P compared to high P conditions. These genotypes can be exploited in future as potential donors for development of phosphorus use efficient chickpea cultivars.