Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-29T22:42:22.765Z Has data issue: false hasContentIssue false

Shock-induced atomisation of a liquid metal droplet

Published online by Cambridge University Press:  26 September 2023

Shubham Sharma
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
Navin Kumar Chandra
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
Aloke Kumar
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
Saptarshi Basu*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bangalore 560012, India
*
Email address for correspondence: sbasu@iisc.ac.in

Abstract

The present study uses Galinstan as a test fluid to investigate the shock-induced atomisation of a liquid metal droplet in a high-Weber-number regime $(We \sim 400\unicode{x2013}8000)$. Atomisation dynamics is examined for three test environments: oxidizing (Galinstan–air), inert (Galinstan–nitrogen) and conventional fluids (deionised water–air). Due to the readily oxidizing nature of liquid metals, their atomisation in an industrial scale system is generally carried out in inert atmosphere conditions. However, no previous study has considered gas-induced secondary atomisation of liquid metals in inert conditions. Due to experimental challenges associated with molten metals, laboratory scale models are generally tested for conventional fluids like deionised water, liquid fuels, etc. The translation of results obtained from conventional fluid to liquid metal atomisation is rarely explored. Here a direct multiscale spatial and temporal comparison is provided between the atomisation dynamics of conventional fluid and liquid metals under oxidizing and inert conditions. The liquid metal droplet undergoes breakup through the shear-induced entrainment mode for the studied range of Weber number values. The prevailing mechanism is explained based on the relative dominance of droplet deformation and Kelvin–Helmholtz wave formation. The study provides quantitative and qualitative similarities for the three test cases and explains the differences in morphology of fragmenting secondary droplets in the oxidizing test case (Galinstan–air) due to rapid oxidation of the fragmenting ligaments. A phenomenological framework is postulated for predicting the morphology of secondary droplets. The formation of flake-like secondary droplets in the Galinstan air test case is based on the oxidation rate of liquid metals and the properties of the oxide layer formed on the atomizing ligament surface.

JFM classification

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.D. 1990 Modern Compressible Flow: with Historical Perspective, vol. 12. McGraw-Hill.Google Scholar
Apell, N., Tropea, C., Roisman, I.V. & Hussong, J. 2023 Experimental investigation of a supersonic close-coupled atomizer employing the phase Doppler measurement technique. Intl J. Multiphase Flow 167, 104544.CrossRefGoogle Scholar
Arienti, M., Ballard, M., Sussman, M., Mazumdar, Y.C., Wagner, J.L., Farias, P.A. & Guildenbecher, D.R. 2019 Comparison of simulation and experiments for multimode aerodynamic breakup of a liquid metal column in a shock-induced cross-flow. Phys. Fluids 31 (8), 082110.CrossRefGoogle Scholar
Biasiori-Poulanges, L. & El-Rabii, H. 2019 High-magnification shadowgraphy for the study of drop breakup in a high-speed gas flow. Opt. Lett. 44 (23), 58845887.CrossRefGoogle Scholar
Bilodeau, R.A., Zemlyanov, D.Y. & Kramer, R.K. 2017 Liquid metal switches for environmentally responsive electronics. Adv. Mater. Interfaces 4 (5), 1600913.CrossRefGoogle Scholar
Chandra, N.K., Sharma, S., Basu, S. & Kumar, A. 2023 Shock-induced aerobreakup of a polymeric droplet. J. Fluid Mech. 965, A1.CrossRefGoogle Scholar
Chen, Y., Wagner, J.L., Farias, P.A., DeMauro, E.P. & Guildenbecher, D.R. 2018 Galinstan liquid metal breakup and droplet formation in a shock-induced cross-flow. Intl J. Multiphase Flow 106, 147163.CrossRefGoogle Scholar
Das, P. & Udaykumar, H.S. 2020 A sharp-interface method for the simulation of shock-induced vaporization of droplets. J. Comput. Phys. 405, 109005.CrossRefGoogle Scholar
Dickey, M.D., Chiechi, R.C., Larsen, R.J., Weiss, E.A., Weitz, D.A. & Whitesides, G.M. 2008 Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18 (7), 10971104.CrossRefGoogle Scholar
Dorschner, B., Biasiori-Poulanges, L., Schmidmayer, K., El-Rabii, H. & Colonius, T. 2020 On the formation and recurrent shedding of ligaments in droplet aerobreakup. J. Fluid Mech. 904, A20.CrossRefGoogle Scholar
Drazin, P.G. & Reid, W.H. 2004 Hydrodynamic Stability. Cambridge University Press.CrossRefGoogle Scholar
Elton, E.S., Reeve, T.C., Thornley, L.E., Joshipura, I.D., Paul, P.H., Pascall, A.J. & Jeffries, J.R. 2020 Dramatic effect of oxide on measured liquid metal rheology. J. Rheol. 64 (1), 119128.CrossRefGoogle Scholar
Guan, B., Liu, Y., Wen, C.-Y. & Shen, H. 2018 Numerical study on liquid droplet internal flow under shock impact. AIAA J. 56 (9), 33823387.CrossRefGoogle Scholar
Guildenbecher, D.R., Cooper, M.A., Gill, W., Stauffacher, H.L., Oliver, M.S. & Grasser, T.W. 2014 Quantitative, three-dimensional imaging of aluminum drop combustion in solid propellant plumes via digital in-line holography. Opt. Lett. 39 (17), 51265129.CrossRefGoogle ScholarPubMed
Guildenbecher, D.R., López-Rivera, C. & Sojka, P.E. 2009 Secondary atomization. Exp. Fluids 46, 371402.CrossRefGoogle Scholar
Handschuh-Wang, S., Gan, T., Wang, T., Stadler, F.J. & Zhou, X. 2021 a Surface tension of the oxide skin of gallium-based liquid metals. Langmuir 37 (30), 90179025.CrossRefGoogle ScholarPubMed
Handschuh-Wang, S., Stadler, F.J. & Zhou, X. 2021 b Critical review on the physical properties of gallium-based liquid metals and selected pathways for their alteration. J. Phys. Chem. C 125 (37), 2011320142.CrossRefGoogle Scholar
Hinze, J.O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1 (3), 289295.CrossRefGoogle Scholar
Hopfes, T., Petersen, J., Wang, Z., Giglmaier, M. & Adams, N.A. 2021 a Secondary atomization of liquid metal droplets at moderate Weber numbers. Intl J. Multiphase Flow 143, 103723.CrossRefGoogle Scholar
Hopfes, T., Wang, Z., Giglmaier, M. & Adams, N.A. 2021 b Experimental investigation of droplet breakup of oxide-forming liquid metals. Phys. Fluids 33 (10), 102114.CrossRefGoogle Scholar
Hsiang, L.-P. & Faeth, G.M. 1995 Drop deformation and breakup due to shock wave and steady disturbances. Intl J. Multiphase Flow 21 (4), 545560.CrossRefGoogle Scholar
Igra, O., Falcovitz, J., Houas, L. & Jourdan, G. 2013 Review of methods to attenuate shock/blast waves. Prog. Aerosp. Sci. 58, 135.CrossRefGoogle Scholar
Jackiw, I.M. & Ashgriz, N. 2021 On aerodynamic droplet breakup. J. Fluid Mech. 913, A33.CrossRefGoogle Scholar
Jain, M., Surya Prakash, R., Tomar, G. & Ravikrishna, R.V. 2015 Secondary breakup of a drop at moderate Weber numbers. Proc. R. Soc. Lond. A 471 (2177), 20140930.Google Scholar
Jia, M. & Newberg, J.T. 2019 Liquid–gas interfacial chemistry of gallium–indium eutectic in the presence of oxygen and water vapor. J. Phys. Chem. C 123 (47), 2868828694.CrossRefGoogle Scholar
Joseph, D.D., Belanger, J. & Beavers, G.S. 1999 Breakup of a liquid drop suddenly exposed to a high-speed airstream. Intl J. Multiphase Flow 25 (6–7), 12631303.CrossRefGoogle Scholar
Kim, D., Thissen, P., Viner, G., Lee, D.-W., Choi, W., Chabal, Y.J. & Lee, J.-B. 2013 Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. ACS Appl. Mater. Interfaces 5 (1), 179185.CrossRefGoogle ScholarPubMed
Kondo, S., Konishi, K., Isozaki, M., Imahori, S., Furutani, A. & Brear, D.J. 1995 Experimental study on simulated molten jet-coolant interactions. Nucl. Engng Des. 155 (1–2), 7384.CrossRefGoogle Scholar
Krzeczkowski, S.A. 1980 Measurement of liquid droplet disintegration mechanisms. Intl J. Multiphase Flow 6 (3), 227239.CrossRefGoogle Scholar
Liang, Y., Jiang, Y., Wen, C.-Y. & Liu, Y. 2020 Interaction of a planar shock wave and a water droplet embedded with a vapour cavity. J. Fluid Mech. 885, R6.CrossRefGoogle Scholar
Liu, N., Wang, Z., Sun, M., Wang, H. & Wang, B. 2018 Numerical simulation of liquid droplet breakup in supersonic flows. Acta Astronaut. 145, 116130.CrossRefGoogle Scholar
Liu, T., Sen, P. & Kim, C.-J. 2011 Characterization of nontoxic liquid-metal alloy Galinstan for applications in microdevices. J. Microelectromech. Syst. 21 (2), 443450.CrossRefGoogle Scholar
Liverts, M., Ram, O., Sadot, O., Apazidis, N. & Ben-Dor, G. 2015 Mitigation of exploding-wire-generated blast-waves by aqueous foam. Phys. Fluids 27 (7), 076103.CrossRefGoogle Scholar
Mandal, S., Sadeghianjahromi, A. & Wang, C.-C. 2022 Experimental and numerical investigations on molten metal atomization techniques – a critical review. Adv. Powder Technol. 33 (11), 103809.CrossRefGoogle Scholar
Mansoor, M.M. & George, J. 2023 Investigation of the Richtmyer–Meshkov instability using digital holography in the context of catastrophic aerobreakup. Exp. Fluids 64 (2), 40.CrossRefGoogle Scholar
Markus, S., Fritsching, U. & Bauckhage, K. 2002 Jet break up of liquid metal in twin fluid atomisation. Mater. Sci. Engng A 326 (1), 122133.CrossRefGoogle Scholar
Marmottant, P. & Villermaux, E. 2004 On spray formation. J. Fluid. Mech. 498, 73111.CrossRefGoogle Scholar
Meng, J.C. & Colonius, T. 2015 Numerical simulations of the early stages of high-speed droplet breakup. Shock Waves 25 (4), 399414.CrossRefGoogle Scholar
Mondal, R., Das, A., Sen, D., Satapathy, D.K. & Basavaraj, M.G. 2019 Spray drying of colloidal dispersions containing ellipsoids. J. Colloid Interface Sci. 551, 242250.CrossRefGoogle ScholarPubMed
Nicholls, J.A. & Ranger, A.A. 1969 Aerodynamic shattering of liquid drops. AIAA J. 7 (2), 285290.CrossRefGoogle Scholar
Odenthal, H.-J., Vogl, N., Brune, T., Apell, N., Roisman, I. & Tropea, C. 2021 Recent modeling approaches to close-coupled atomization for powder production. In 9th International Conference on Modeling and Simulation of Metallurgical Processes in Steelmaking: STEELSIM2021, Vienna, Austria.Google Scholar
Opfer, L., Roisman, I.V., Venzmer, J., Klostermann, M. & Tropea, C. 2014 Droplet-air collision dynamics: evolution of the film thickness. Phys. Rev. E 89 (1), 013023.CrossRefGoogle ScholarPubMed
Padrino, J.C. & Joseph, D. 2006 Shear instability of a planar liquid jet immersed in a high speed gas stream. PhD thesis, Master's thesis, University of Minnesota.Google Scholar
Pilch, M. & Erdman, C.A. 1987 Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Intl J. Multiphase Flow 13 (6), 741757.CrossRefGoogle Scholar
Plevachuk, Y., Sklyarchuk, V., Eckert, S., Gerbeth, G. & Novakovic, R. 2014 Thermophysical properties of the liquid Ga–In–Sn eutectic alloy. J. Chem. Engng Data 59 (3), 757763.CrossRefGoogle Scholar
Pontalier, Q., Loiseau, J., Goroshin, S. & Frost, D.L. 2018 Experimental investigation of blast mitigation and particle–blast interaction during the explosive dispersal of particles and liquids. Shock Waves 28, 489511.CrossRefGoogle Scholar
Poplavski, S.V., Minakov, A.V., Shebeleva, A.A. & Boyko, V.M. 2020 On the interaction of water droplet with a shock wave: experiment and numerical simulation. Intl J. Multiphase Flow 127, 103273.CrossRefGoogle Scholar
Rader, D.J. & Benson, D.A. 1988 Aerosol production by high-velocity molten-metal droplets. Tech. Rep. SAND-88-0678. Sandia National Laboratory.CrossRefGoogle Scholar
Rajamanickam, K. & Basu, S. 2017 On the dynamics of vortex–droplet interactions, dispersion and breakup in a coaxial swirling flow. J. Fluid Mech. 827, 572613.CrossRefGoogle Scholar
Ram, O. & Sadot, O. 2012 Implementation of the exploding wire technique to study blast-wave–structure interaction. Exp. Fluids 53, 13351345.CrossRefGoogle Scholar
Scharmann, F., Cherkashinin, G., Breternitz, V., Knedlik, Ch., Hartung, G., Weber, Th. & Schaefer, J.A. 2004 Viscosity effect on GaInSn studied by XPS. Surf. Interface Anal. 36 (8), 981985.CrossRefGoogle Scholar
Sembian, S., Liverts, M., Tillmark, N. & Apazidis, N. 2016 Plane shock wave interaction with a cylindrical water column. Phys. Fluids 28 (5), 056102.CrossRefGoogle Scholar
Sharma, S., Chandra, N.K., Basu, S. & Kumar, A. 2022 Advances in droplet aerobreakup. Eur. Phys. J.: Spec. Top. 232, 115.Google Scholar
Sharma, S., Pinto, R., Saha, A., Chaudhuri, S. & Basu, S. 2021 a On secondary atomization and blockage of surrogate cough droplets in single-and multilayer face masks. Sci. Adv. 7 (10), eabf0452.CrossRefGoogle ScholarPubMed
Sharma, S., Rao, S.J., Chandra, N.K., Kumar, A., Basu, S. & Tropea, C. 2023 Depth from defocus technique applied to unsteady shock-drop secondary atomization. Exp. Fluids 64 (4), 65.CrossRefGoogle Scholar
Sharma, S., Singh, A.P. & Basu, S. 2021 b On the dynamics of vortex–droplet co-axial interaction: insights into droplet and vortex dynamics. J. Fluid Mech. 918, A37.CrossRefGoogle Scholar
Sharma, S., Singh, A.P., Rao, S.S., Kumar, A. & Basu, S. 2021 c Shock induced aerobreakup of a droplet. J. Fluid Mech. 929, A27.CrossRefGoogle Scholar
Starr, R.F., Bailey, A.B. & Varner, M.O. 1976 Shock detachment distance at near sonic speeds. AIAA J. 14 (4), 537539.CrossRefGoogle Scholar
Sun, M., Saito, T., Takayama, K. & Tanno, H. 2005 Unsteady drag on a sphere by shock wave loading. Shock Waves 14 (1), 39.CrossRefGoogle Scholar
Supponen, O., Akimura, T., Minami, T., Nakajima, T., Uehara, S., Ohtani, K., Kaneko, T., Farhat, M. & Sato, T. 2018 Jetting from cavitation bubbles due to multiple shockwaves. Appl. Phys. Lett. 113 (19), 193703.CrossRefGoogle Scholar
Tanno, H., Itoh, K., Saito, T., Abe, A. & Takayama, K. 2003 Interaction of a shock with a sphere suspended in a vertical shock tube. Shock Waves 13, 191200.CrossRefGoogle Scholar
Theofanous, T.G. 2011 Aerobreakup of Newtonian and viscoelastic liquids. Annu. Rev. Fluid Mech. 43 (1), 661690.CrossRefGoogle Scholar
Theofanous, T.G., Li, G.J. & Dinh, T.-N. 2004 Aerobreakup in rarefied supersonic gas flows. Trans. ASME J. Fluids Engng 126 (4), 516527.CrossRefGoogle Scholar
Theofanous, T.G. & Li, G.J. 2008 On the physics of aerobreakup. Phys. Fluids 20 (5), 052103.CrossRefGoogle Scholar
Theofanous, T.G., Mitkin, V.V., Ng, C.L., Chang, C-H., Deng, X. & Sushchikh, S. 2012 The physics of aerobreakup. II. Viscous liquids. Phys. Fluids 24 (2), 022104.CrossRefGoogle Scholar
Villermaux, E. 1998 Mixing and spray formation in coaxial jets. J. Propul. Power 14 (5), 807817.CrossRefGoogle Scholar
Villermaux, E. & Bossa, B. 2009 Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5 (9), 697702.CrossRefGoogle Scholar
Wang, Z., Hopfes, T., Giglmaier, M. & Adams, N.A. 2020 Effect of Mach number on droplet aerobreakup in shear stripping regime. Exp. Fluids 61, 193.CrossRefGoogle ScholarPubMed
Xu, Q., Oudalov, N., Guo, Q., Jaeger, H.M. & Brown, E. 2012 Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium. Phys. Fluids 24 (6), 063101.CrossRefGoogle Scholar
Zhang, J.-S. 2010 High Temperature Deformation and Fracture of Materials. Elsevier.CrossRefGoogle Scholar

Sharma et al. Supplementary Movie 1

Movie 1: Global view of atomisation.

Download Sharma et al. Supplementary Movie 1(Video)
Video 20.8 MB

Sharma et al. Supplementary Movie 2

Movie 2: Mechanism of Galinstan droplet breakup.

Download Sharma et al. Supplementary Movie 2(Video)
Video 6.5 MB

Sharma et al. Supplementary Movie 3

Movie 3: Measurement of cross stream deformation.

Download Sharma et al. Supplementary Movie 3(Video)
Video 7.9 MB

Sharma et al. Supplementary Movie 4

Movie 4: Kelvin-Helmholtz instability waves visualisation.

Download Sharma et al. Supplementary Movie 4(Video)
Video 3.5 MB
Supplementary material: PDF

Sharma et al. supplementary material

Sharma et al. supplementary material

Download Sharma et al. supplementary material(PDF)
PDF 1.3 MB