We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
While both simultaneous and sequential contests are mechanisms used in practice such as crowdsourcing, job interviews and sports contests, few studies have directly compared their performance. By modeling contests as incomplete information all-pay auctions with linear costs, we analytically and experimentally show that the expected maximum effort is higher in simultaneous contests, in which contestants choose their effort levels independently and simultaneously, than in sequential contests, in which late entrants make their effort choices after observing all prior participants’ choices. Our experimental results also show that efficiency is higher in simultaneous contests than in sequential ones. Sequential contests’ efficiency drops significantly as the number of contestants increases. We also discover that when participants’ ability follows a power distribution, high ability players facing multiple opponents in simultaneous contests tend to under-exert effort, compared to theoretical predictions. We explain this observation using a simple model of overconfidence.
This study aimed to investigate the intake of dairy products during pregnancy in women with gestational diabetes mellitus (GDM) and its impacts on neonatal birth weight and pregnancy outcomes. A total of 386 women with GDM during the second trimester pregnancy participated in this prospective cohort study. We evaluated dairy products intake through the FFQ. Pregnancy outcomes were obtained from the delivery data. Participants were divided into insufficient and sufficient intake of milk and dairy products groups (< 300 g/d and ≥ 300 g/d, respectively). The average intake of dairy products during the second trimester pregnancy in women with GDM was 317·8 ± 179·5 g/d, and the total energy intake was 1635·4 ± 708·7 kcal/d. However, 76·68 % of them did not meet the recommended total energy intake of women with GDM. After adjusting for confounding factors, women with GDM who consumed ≥ 300 g/d of dairy products had an average reduction in birth weight of 93·1 g compared with women who consumed < 300 g/d of dairy products (95 % CI −171·343, −14·927). Women with GDM in sufficient intake group was also associated with lower risk of macrosomia (95 % CI 0·043, 0·695) and caesarean section (95 % CI 0·387, 0·933) and not related to low birth weight infant (95 % CI 0·617, 14·502) and preterm birth (95 % CI 0·186, 1·510) when compared with participants in insufficient intake group. Under the premise of insufficient total energy intake, the intake of dairy products during the second trimester pregnancy in women with GDM might be related to the decrease of neonatal birth weight.
A multifunctional optical diagnostic system, which includes an interferometer, a refractometer and a multi-frame shadowgraph, has been developed at the Shenguang-II upgrade laser facility to characterize underdense plasmas in experiments of the double-cone ignition scheme of inertial confinement fusion. The system employs a 266 nm laser as the probe to minimize the refraction effect and allows for flexible switching among three modes of the interferometer, refractometer and multi-frame shadowgraph. The multifunctional module comprises a pair of beam splitters that attenuate the laser, shield stray light and configure the multi-frame and interferometric modules. By adjusting the distance and angle between the beam splitters, the system can be easily adjusted and switched between the modes. Diagnostic results demonstrate that the interferometer can reconstruct electron density below 1019 cm–3, while the refractometer can diagnose density approximately up to 1020 cm–3. The multi-frame shadowgraph is used to qualitatively characterize the temporal evolution of plasmas in the cases in which the interferometer and refractometer become ineffective.
This paper proposes a nonparametric approach to identify and estimate the generalized additive model with a flexible additive structure and with possibly discrete variables when the link function is unknown. Our approach allows for a flexible additive structure which provides applied researchers the flexibility to specify their model according to economic theory or practical experience. Motivated by the concerns from empirical research, our method also allows for multiple discrete variables in the covariates. By transforming our model into a generalized additive model with univariate component functions, our identification and estimation thereby follows a procedure adapted from the case with univariate components. The estimators converge to normal distributions in large sample with a one-dimensional convergence rate for the link function and a $d_k$-dimensional convergence rate for the component function $f_k(\cdot )$ defined on ${\mathbb R}^{d_k}$ for all k.
Tea can improve the progression of some metabolic diseases through anti-inflammatory and antioxidant effects, but its impact on non-alcoholic fatty liver disease (NAFLD) is still controversial. The aim of this paper is to identify the relationship between tea and NAFLD by Mendelian randomisation (MR) and complete clinical validation using National Health and Nutrition Examination Survey (NHANES) database. MR used data from Genome Wide Association Study, with inverse-variance weighted (IVW) as principal analytical methods. The reliability of the results was verified by a series of sensitivity and heterogeneity tests. Subsequently, clinical validation was conducted using NHANES (2005–2018), involving 22 257 participants, grouped by the type of tea. Green tea drinkers were categorised into four groups (Q1–Q4) by quartiles of green tea intake, from lowest to highest (similar for black tea drinkers and other tea drinkers). Models were constructed by logistic regression to estimate the role of tea consumption (Q1–4) on NAFLD. Finally, using fibrosis-4 index (FIB-4) to evaluate the severity of hepatic fibrosis, the effect of tea consumption (Q1–4) on the degree of hepatic fibrosis was investigated by linear regression. IVW method (OR = 0·43, 95 % CI: 0·21, 0·85, P = 0·01) and weighted median method (OR = 0·35, 95 % CI: 0·14, 0·91, P = 0·03) revealed there was a causal relationship between tea and NAFLD. An array of sensitivity analyses validated the reliability of results. Analysis of NHANES indicated tea drinker present a slightly lower prevalence of NAFLD than non-tea drinker (green tea drinkers: 47·6 %, black tea drinkers: 46·3 %, other tea drinker: 43·2 %, non-tea drinkers: 48·1 %, P < 0·05). After adjusting for confounders, compared with the lowest black tea consumption (Q1), the population with the highest black tea consumption (Q4) was independently related to lower presence of NAFLD (Q4: OR = 0·69, 95 % CI: 0·50, 0·93, P < 0·05), such association remained stable in the overweight subgroup. As further analysed, Q4 also displayed a significant negative correlation with the level of hepatic fibrosis in patients with NAFLD (β = –0·073, 95 % CI: –0·126, −0·020, P < 0·01).Tea reduces the morbidity of NAFLD and ameliorates hepatic fibrosis degree in those already suffering from the disease.
The global challenge of methane emissions from enteric fermentation is critical, as it contributes significantly to atmospheric greenhouse gases and represents a loss of energy that could otherwise be utilized by ruminants. With the increasing demand for dairy and meat products, finding effective methods to reduce methane production is essential. This review explores the use of advanced meta-omics techniques – including metagenomics, metatranscriptomics, metaproteomics, and metabolomics – to deepen our understanding of ruminal methane production and identify potential strategies for its mitigation. These high-throughput technologies provide comprehensive insights into the rumen microbial communities and their metabolic functions by analyzing DNA, RNA, proteins, and metabolites directly from environmental samples. Metagenomics and metatranscriptomics offer a detailed view of microbial diversity and gene expression, while metaproteomics can identify specific enzymes and proteins directly involved in methane production pathways, revealing potential targets for mitigation strategies. Integrating these meta-omics approaches allows for a holistic understanding of the microbial processes that drive methane emissions, enabling the development of more precise interventions, such as tailored dietary modifications and the use of specific inhibitors. This review underscores the importance of a multi-omics strategy in characterizing microbial roles and interactions within the rumen, which is crucial for devising effective and sustainable methods to reduce methane emissions without compromising livestock productivity.
We formulate and prove the archimedean period relations for Rankin–Selberg convolutions for ${\mathrm {GL}}(n)\times {\mathrm {GL}}(n-1)$. As a consequence, we prove the period relations for critical values of the Rankin–Selberg L-functions for ${\mathrm {GL}}(n)\times {\mathrm {GL}}(n-1)$ over arbitrary number fields.
The embodied view of semantic processing holds that readers achieve reading comprehension through mental simulation of the objects and events described in the narrative. However, it remains unclear whether and how the encoding of linguistic factors in narrative descriptions impacts narrative semantic processing. This study aims to explore this issue under the narrative context with and without perspective shift, which is an important and common linguistic factor in narratives. A sentence-picture verification paradigm combined with eye-tracking measures was used to explore the issue. The results showed that (1) the inter-role perspective shift made the participants’ to evenly allocate their first fixation to different elements in the scene following the new perspective; (2) the internal–external perspective shift increased the participants’ total fixation count when they read the sentence with the perspective shift; (3) the scene detail depicted in the picture did not influence the process of narrative semantic processing. These results suggest that perspective shift can disrupt the coherence of situation model and increase the cognitive load of readers during reading. Moreover, scene detail could not be constructed by readers in natural narrative reading.
Continuum robot has become a research hotspot due to its excellent dexterity, flexibility and applicability to constrained environments. However, the effective, secure and accurate path planning for the continuum robot remains a challenging issue, for that it is difficult to choose a suitable inverse kinematics solution due to its redundancy in the confined environment. This paper presents a collision-free path planning method based on the improved artificial potential field (APF) for the cable-driven continuum robot, in which the beetle antennae search algorithm is adopted to deal with the optimal problem of APF without the necessary for velocity kinematics. In addition, the local optimum problem of traditional APF is solved by the randomness of the antennae’s direction vector which can make the algorithm easily jump out of local minima. The simulation and experimental results verify the efficiency of the proposed path planning method.
Physically compliant actuator brings significant benefits to robots in terms of environmental adaptability, human–robot interaction, and energy efficiency as the introduction of the inherent compliance. However, this inherent compliance also limits the force and position control performance of the actuator system due to the induced oscillations and decreased mechanical bandwidth. To solve this problem, we first investigate the dynamic effects of implementing variable physical damping into a compliant actuator. Following this, we propose a structural scheme that integrates a variable damping element in parallel to a conventional series elastic actuator. A damping regulation algorithm is then developed for the parallel spring-damping actuator (PSDA) to tune the dynamic performance of the system while remaining sufficient compliance. Experimental results show that the PSDA offers better stability and dynamic capability in the force and position control by generating appropriate damping levels.
This study aimed to investigate the association between n-3 PUFA and lung function. First, a cross-sectional study was conducted based on the National Health and Nutrition Examination Survey (NHANES) 2007–2012 data. n-3 PUFA intake was obtained from 24-h dietary recalls. A multivariable linear regression model was used to assess the observational associations of n-3 PUFA intake with lung function. Subsequently, a two-sample Mendelian randomisation (MR) was performed to estimate the potential causal effect of n-3 PUFA on lung function. Genetic instrumental variables were extracted from published genome-wide association studies. Summary statistics about n-3 PUFA was from UK Biobank. Inverse variance weighted was the primary analysis approach. The observational study did not demonstrate a significant association between n-3 PUFA intake and most lung function measures; however, a notable exception was observed with significant findings in the highest quartile for forced vital capacity (FVC) and % predicted FVC. The MR results also showed no causal effect of circulating n-3 PUFA concentration on lung function (forced expiratory volume in one second (FEV1), β = 0·01301, se = 0·01932, P = 0·5006; FVC, β = −0·001894, se = 0·01704, P = 0·9115; FEV1:FVC, β = 0·03118, se = 0·01743, P = 0·07359). These findings indicate the need for further investigation into the impact of higher n-3 PUFA consumption on lung health.
Ion adsorption-type rare earth deposits (IADs) are developed via prolonged weathering of REE-rich volcanic and metamorphic rocks. Intense magmatic activity which occurred during the Yanshanian (199.6–65.5 Ma) and Caledonian periods (542–359.2 Ma) provided an abundant material basis for the formation of IADs in South China. High concentrations of REE and the high proportion of ion-exchangeable REE were found in the Maofeng Mountain regolith, Guangzhou city. However, the geochemical patterns and mechanisms of REE enrichment in the regolith were still poorly understood. The present study investigated the regolith profile (0–8 m) developed in Maofeng Mountain based on metallogenic and geochemical characteristics, sequential extraction, and physical and chemical parameters of the regolith profile. The bedrock contained abundant REE resources (245–287 mg kg–1) and the chondrite-normalized REE patterns showed the enrichment of light REE (LREE) and negative cerium (Ce) and europium (Eu) anomalies. The distribution patterns of REE in the bedrock were inherited by the regolith. REE enrichment of the regolith occurred mainly in the completely weathered layer (B1, B2, and B3 horizons), particularly in the depth range 2.5–4.5 m (849–2391 mg kg–1). The position of REE enrichment was controlled by the soil pH (5.52–6.02), by the amount of kaolinite and halloysite, and by the permeability of the metamorphic rock. In the REE-enriched horizon (2–8 m), the REE were hosted mainly in ion-exchangeable fractions (75–2158 mg kg–1), representing 79% of the total REE. Given the pH of 4.73–6.02, REE fractionation driven by the adsorption of kaolinite was limited. Fe–Mn (oxyhydr)oxides played an important role in REE enrichment and the reducible fraction holds up to 21% (139 mg kg–1) of the total REE. The enrichment of LREE was observed in the reducible fraction potentially because of the preferential release of LREE from the LREE-bearing minerals (monazite) and then scavenged by Fe–Mn (oxyhydr)oxides. Positive Ce anomalies (Ce/Ce*: 10) were found in the reducible fraction because trivalent Ce was oxidized by Fe–Mn (oxyhydr)oxides to cerianite (CeO2). The present study helps to understand the enrichment and fractionation of REE in the IADs of South China.
This study aimed to compare changes in the level of health technology assessment (HTA) development from 2016 to 2021, and to inform policies and decisions to promote further development of HTA in China.
Methods
We conducted a cross-sectional and anonymous web-based survey to relevant stakeholders in China in 2016 and 2021 respectively. The mapping of the HTA instrument was used to reflect the HTA development from eight domains. To reduce the influence of confounders and to compare the mapping outcomes between 2016 and 2021 groups, we performed 1:1 propensity score matching methodology in this study. Univariate analysis was performed to compare the differences in these two groups. We also compared the overall results with that of a mapping study that included ten countries.
Results
A total of 212 and 255 respondents completed the survey in 2016 and 2021 respectively. After propensity score matching methodology, 183 cases from the 2016 group and 2021 group were matched. Overall, the mean score of 2021 in most of the domains was higher than in 2016 in China (p < 0.05), matching the level of HTA institutionalization and dissemination strategy, except for the assessment domain. Although China scored significantly lower among the three developed countries, the overall HTA development score for China was comparable among the ten countries.
Conclusions
Our study suggested the level of HTA development in China has made great progress from 2016 to 2021. Prior to HTA activities, the researcher or policy makers should first formulate an explicit assessment goal and scope, and during the assessment process, more attention should be paid to the clinical effectiveness and cost-effectiveness indicator to ensure a higher quality of HTA evidence.
Dietary antioxidant indices (DAI) may be potentially associated with relative telomere length (RTL) of leucocytes. This study aimed to investigate the relationship between DAI and RTL. A cross-sectional study involving 1656 participants was conducted. A generalised linear regression model and a restricted cubic spline model were used to assess the correlation of DAI and its components with RTL. Generalised linear regression analysis revealed that DAI (β = 0·005, P = 0·002) and the intake of its constituents vitamin C (β = 0·043, P = 0·027), vitamin E (β = 0·088, P < 0·001), Se (β = 0·075, P = 0·003), and Zn (β = 0·075, P = 0·023) were significantly and positively correlated with RTL. Sex-stratified analysis showed that DAI (β = 0·006, P = 0·005) and its constituents vitamin E (β = 0·083, P = 0·012), Se (β = 0·093, P = 0·006), and Zn (β = 0·092, P = 0·034) were significantly and positively correlated with RTL among females. Meanwhile, among males, only vitamin E intake (β = 0·089, P = 0·013) was significantly and positively associated with RTL. Restricted cubic spline analysis revealed linear positive associations between DAI and its constituents’ (vitamin E, Se and Zn) intake and RTL in the total population. Sex-stratified analysis revealed a linear positive correlation between DAI and its constituents’ (vitamin E, Se and Zn) intake and RTL in females. Our study found a significant positive correlation between DAI and RTL, with sex differences.
Product data sharing is fundamental for collaborative product design and development. Although the STandard for Exchange of Product model data (STEP) enables this by providing a unified data definition and description, it lacks the ability to provide a more semantically enriched product data model. Many researchers suggest converting STEP models to ontology models and propose rules for mapping EXPRESS, the descriptive language of STEP, to Web Ontology Language (OWL). In most research, this mapping is a manual process which is time-consuming and prone to misunderstandings. To support this conversion, this research proposes an automatic method based on natural language processing techniques (NLP). The similarities of language elements in the reference manuals of EXPRESS and OWL have been analyzed in terms of three aspects: heading semantics, text semantics, and heading hierarchy. The paper focusses on translating between language elements, but the same approach has also been applied to the definition of the data models. Two forms of the semantic analysis with NLP are proposed: a Combination of Random Walks (RW) and Global Vectors for Word Representation (GloVe) for heading semantic similarity; and a Decoding-enhanced BERT with disentangled attention (DeBERTa) ensemble model for text semantic similarity. The evaluation shows the feasibility of the proposed method. The results not only cover most language elements mapped by current research, but also identify the mappings of the elements that have not been included. It also indicates the potential to identify the OWL segments for the EXPRESS declarations.
Multilayer dielectric gratings (MLDGs) are crucial for pulse compression in picosecond–petawatt laser systems. Bulged nodular defects, embedded in coating stacks during multilayer deposition, influence the lithographic process and performance of the final MLDG products. In this study, the integration of nanosecond laser conditioning (NLC) into different manufacturing stages of MLDGs was proposed for the first time on multilayer dielectric films (MLDFs) and final grating products to improve laser-induced damage performance. The results suggest that the remaining nodular ejection pits introduced by the two protocols exhibit a high nanosecond laser damage resistance, which remains stable when the irradiated laser fluence is more than twice the nanosecond-laser-induced damage threshold (nanosecond-LIDT) of the unconditioned MLDGs. Furthermore, the picosecond-LIDT of the nodular ejection pit conditioned on the MLDFs was approximately 40% higher than that of the nodular defects, and the loss of the grating structure surrounding the nodular defects was avoided. Therefore, NLC is an effective strategy for improving the laser damage resistance of MLDGs.
Trace elements may play an important role in obesity. This study aimed to assess the plasma and dietary intake levels of four trace elements, Mn, Cu, Zn and Se in a rural Chinese population, and analyse the relationship between trace elements and obesity. A cross-sectional study involving 2587 participants was conducted. Logistic regression models were used to analyse the association between trace elements and obesity; restricted cubic spline (RCS) models were used to assess the dose–response relationship between trace elements and obesity; the weighted quantile sum (WQS) model was used to examine the potential interaction of four plasma trace elements on obesity. Logistic regression analysis showed that plasma Se concentrations in the fourth quartile (Q4) exhibited a lower risk of developing obesity than the first quartile (Q1) (central obesity: OR = 0·634, P = 0·002; general obesity: OR = 0·525, P = 0·005). Plasma Zn concentration in the third quartile (Q3) showed a lower risk of developing obesity in general obesity compared with the first quartile (Q1) (OR = 0·625, P = 0·036). In general obesity, the risk of morbidity was 1·727 and 1·923 times higher for the second and third (Q2, Q3) quartiles of dietary Mn intake than for Q1, respectively. RCS indicated an inverse U-shaped correlation between plasma Se and obesity. WQS revealed the combined effects of four trace elements were negatively associated with central obesity. Plasma Zn and Se were negatively associated with obesity, and dietary Mn was positively associated with obesity. The combined action of the four plasma trace elements had a negative effect on obesity.
Large-scale Ulva prolifera green tides have successively occurred for 16 years (2007–2022) in the Yellow Sea (YS), and the different life stages of U. prolifera play critical roles in regulating the occurrence and development of green tides. U. prolifera and microalgae have a similar niche in seawater, but their potential interactions are not yet clearly understood. In this study, we investigated the competition relationship between two microalgae and U. prolifera at five different development stages in controlled laboratory experiments. The results showed that one microalgae Alexandrium tamarense, can only inhibit U. prolifera gametes at the first settlement stage. Inversely, the germinated U. prolifera begin to show negative effects on microalgae in multiple ways at the subsequent four stages, and the growth inhibition rates among these stages ranged from 19 to 100%. The complex interactions may influence the formation of green tides. Meanwhile, the potential ecological consequences on phytoplankton, even the decreased occurrence of microalgal blooms in the YS need to be further evaluated.
The laser-induced damage threshold (LIDT) of plate laser beam splitter (PLBS) coatings is closely related to the subsurface absorption defects of the substrate. Herein, a two-step deposition temperature method is proposed to understand the effect of substrate subsurface impurity defects on the LIDT of PLBS coatings. Firstly, BK7 substrates are heat-treated at three different temperatures. The surface morphology and subsurface impurity defect distribution of the substrate before and after the heat treatment are compared. Then, a PLBS coating consisting of alternating HfO2–Al2O3 mixture and SiO2 layers is designed to achieve a beam-splitting ratio (transmittance to reflectance, s-polarized light) of approximately 50:50 at 1053 nm and an angle of incidence of 45°, and it is prepared under four different deposition processes. The experimental and simulation results show that the subsurface impurity defects of the substrate migrate to the surface and accumulate on the surface during the heat treatment, and become absorption defect sources or nodule defect seeds in the coating, reducing the LIDT of the coating. The higher the heat treatment temperature, the more evident the migration and accumulation of impurity defects. A lower deposition temperature (at which the coating can be fully oxidized) helps to improve the LIDT of the PLBS coating. When the deposition temperature is 140°C, the LIDT (s-polarized light, wavelength: 1064 nm, pulse width: 9 ns, incident angle: 45°) of the PLBS coating is 26.2 J/cm2, which is approximately 6.7 times that of the PLBS coating deposited at 200°C. We believe that the investigation into the laser damage mechanism of PLBS coatings will help to improve the LIDT of coatings with partial or high transmittance at laser wavelengths.
Straightplasma channels are widely used to guide relativistic intense laser pulses over several Rayleigh lengths for laser wakefield acceleration. Recently, a curved plasma channel with gradually varied curvature was suggested to guide a fresh intense laser pulse and merge it into a straight channel for staged wakefield acceleration [Phys. Rev. Lett. 120, 154801 (2018)]. In this work, we report the generation of such a curved plasma channel from a discharged capillary. Both longitudinal and transverse density distributions of the plasma inside the channel were diagnosed by analyzing the discharging spectroscopy. Effects of the gas-filling mode, back pressure and discharging voltage on the plasma density distribution inside the specially designed capillary are studied. Experiments show that a longitudinally uniform and transversely parabolic plasma channel with a maximum channel depth of 47.5 μm and length of 3 cm can be produced, which is temporally stable enough for laser guiding. Using such a plasma channel, a laser pulse with duration of 30 fs has been successfully guided along the channel with the propagation direction bent by 10.4°.