To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this note, we examine the proportion of periodic orbits of Anosov flows that lie in an infinite zero density subset of the first homology group. We show that on a logarithmic scale we get convergence to a discrete fractal dimension.
In this paper, we study transitivity of partially hyperbolic endomorphisms of the two torus whose action in the first homology group has two integer eigenvalues of moduli greater than one. We prove that if the Jacobian is everywhere greater than the modulus of the largest eigenvalue, then the map is robustly transitive. For this, we introduce Blichfedt’s theorem as a tool for extracting dynamical information from the action of a map in homology. We also treat the case of specially partially hyperbolic endomorphisms, for which we obtain a complete dichotomy: either the map is transitive and conjugated to its linear part, or its unstable foliation must contain an annulus which may either be wandering or periodic.
We prove that for $C^{1+\theta }$, $\theta $-bunched, dynamically coherent partially hyperbolic diffeomorphisms, the stable and unstable holonomies between center leaves are $C^1$, and the derivative depends continuously on the points and on the map. Also for $C^{1+\theta }$, $\theta $-bunched partially hyperbolic diffeomorphisms, the derivative cocycle restricted to the center bundle has invariant continuous holonomies which depend continuously on the map. This generalizes previous results by Pugh, Shub, and Wilkinson; Burns and Wilkinson; Brown; Obata; Avila, Santamaria, and Viana; and Marin.
We compare the dimension of a non-invertible self-affine set to the dimension of the respective invertible self-affine set. In particular, for generic planar self-affine sets, we show that the dimensions coincide when they are large and differ when they are small. Our study relies on thermodynamic formalism where, for dominated and irreducible matrices, we completely characterise the behaviour of the pressures.
Feng and Huang [Variational principle for weighted topological pressure. J. Math. Pures Appl. (9)106 (2016), 411–452] introduced weighted topological entropy and pressure for factor maps between dynamical systems and established its variational principle. Tsukamoto [New approach to weighted topological entropy and pressure. Ergod. Th. & Dynam. Sys.43 (2023), 1004–1034] redefined those invariants quite differently for the simplest case and showed via the variational principle that the two definitions coincide. We generalize Tsukamoto’s approach, redefine the weighted topological entropy and pressure for higher dimensions, and prove the variational principle. Our result allows for an elementary calculation of the Hausdorff dimension of affine-invariant sets such as self-affine sponges and certain sofic sets that reside in Euclidean space of arbitrary dimension.
We study the joint distribution of values of a pair consisting of a quadratic form ${\mathbf q}$ and a linear form ${\mathbf l}$ over the set of integral vectors, a problem initiated by Dani and Margulis [Orbit closures of generic unipotent flows on homogeneous spaces of $\mathrm{SL}_3(\mathbb{R})$. Math. Ann.286 (1990), 101–128]. In the spirit of the celebrated theorem of Eskin, Margulis and Mozes on the quantitative version of the Oppenheim conjecture, we show that if $n \ge 5$, then under the assumptions that for every $(\alpha , \beta ) \in {\mathbb {R}}^2 \setminus \{ (0,0) \}$, the form $\alpha {\mathbf q} + \beta {\mathbf l}^2$ is irrational and that the signature of the restriction of ${\mathbf q}$ to the kernel of ${\mathbf l}$ is $(p, n-1-p)$, where ${3\le p\le n-2}$, the number of vectors $v \in {\mathbb {Z}}^n$ for which $\|v\| < T$, $a < {\mathbf q}(v) < b$ and $c< {\mathbf l}(v) < d$ is asymptotically $ C({\mathbf q}, {\mathbf l})(d-c)(b-a)T^{n-3}$ as $T \to \infty $, where $C({\mathbf q}, {\mathbf l})$ only depends on ${\mathbf q}$ and ${\mathbf l}$. The density of the set of joint values of $({\mathbf q}, {\mathbf l})$ under the same assumptions is shown by Gorodnik [Oppenheim conjecture for pairs consisting of a linear form and a quadratic form. Trans. Amer. Math. Soc.356(11) (2004), 4447–4463].
Let ${{\mathcal {H}}}$ be a stratum of translation surfaces with at least two singularities, let $m_{{{\mathcal {H}}}}$ denote the Masur-Veech measure on ${{\mathcal {H}}}$, and let $Z_0$ be a flow on $({{\mathcal {H}}}, m_{{{\mathcal {H}}}})$ obtained by integrating a Rel vector field. We prove that $Z_0$ is mixing of all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for more general spaces $({\mathcal L}, m_{{\mathcal L}})$, where ${\mathcal L} \subset {{\mathcal {H}}}$ is an orbit-closure for the action of $G = \operatorname {SL}_2({\mathbb {R}})$ (i.e., an affine invariant subvariety) and $m_{{\mathcal L}}$ is the natural measure. These results are conditional on a forthcoming measure classification result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of $Z_0$ with respect to any of the measures $m_{{{\mathcal L}}}$ is zero.
We prove a multidimensional conformal version of the scale recurrence lemma of Moreira and Yoccoz [Stable intersections of regular Cantor sets with large Hausdorff dimensions. Ann. of Math. (2)154(1) (2001), 45–96] for Cantor sets in the complex plane. We then use this new recurrence lemma, together with Moreira’s ideas in [Geometric properties of images of Cartesian products of regular Cantor sets by differentiable real maps. Math. Z.303 (2023), 3], to prove that under the right hypothesis for the Cantor sets $K_1,\ldots ,K_n$ and the function $h:\mathbb {C}^{n}\to \mathbb {R}^{l}$, the following formula holds:
The first part of this work is devoted to the study of higher derivatives of pressure functions of Hölder potentials on shift spaces with finitely many symbols. By describing the derivatives of pressure functions via the central limit theorem for the associated random processes, we discover some rigid relationships between derivatives of various orders. The rigidity imposes obstructions on fitting candidate convex analytic functions by pressure functions of Hölder potentials globally, which answers a question of Kucherenko and Quas. In the second part of the work, we consider fitting candidate analytic germs by pressure functions of locally constant potentials. We prove that all 1-level candidate germs can be realised by pressures of some locally constant potentials, as long as the number of symbols in the symbolic set is large enough. There are also some results on fitting 2-level germs by pressures of locally constant potentials obtained in the work.
Given the full shift over a countable state space on a countable amenable group, we develop its thermodynamic formalism. First, we introduce the concept of pressure and, using tiling techniques, prove its existence and further properties, such as an infimum rule. Next, we extend the definitions of different notions of Gibbs measures and prove their existence and equivalence, given some regularity and normalization criteria on the potential. Finally, we provide a family of potentials that nontrivially satisfy the conditions for having this equivalence and a nonempty range of inverse temperatures where uniqueness holds.
We study the Diophantine transference principle over function fields. By adapting the approach of Beresnevich and Velani [‘An inhomogeneous transference principle and Diophantine approximation’, Proc. Lond. Math. Soc. (3)101 (2010), 821–851] to function fields, we extend many results from homogeneous to inhomogeneous Diophantine approximation. This also yields the inhomogeneous Baker–Sprindžuk conjecture over function fields and upper bounds for the general nonextremal scenario.
We present a modified version of the well-known geometric Lorenz attractor. It consists of a $C^1$ open set ${\mathcal O}$ of vector fields in ${\mathbb R}^3$ having an attracting region ${\mathcal U}$ satisfying three properties. Namely, a unique singularity $\sigma $; a unique attractor $\Lambda $ including the singular point and the maximal invariant in ${\mathcal U}$ has at most two chain recurrence classes, which are $\Lambda $ and (at most) one hyperbolic horseshoe. The horseshoe and the singular attractor have a collision along with the union of $2$ codimension $1$ submanifolds which split ${\mathcal O}$ into three regions. By crossing this collision locus, the attractor and the horseshoe may merge into a two-sided Lorenz attractor, or they may exchange their nature: the Lorenz attractor expels the singular point $\sigma $ and becomes a horseshoe, and the horseshoe absorbs $\sigma $ becoming a Lorenz attractor.
Let $f: M\rightarrow M$ be a $C^{1+\alpha }$ diffeomorphism on an $m_0$-dimensional compact smooth Riemannian manifold M and $\mu $ a hyperbolic ergodic f-invariant probability measure. This paper obtains an upper bound for the stable (unstable) pointwise dimension of $\mu $, which is given by the unique solution of an equation involving the sub-additive measure-theoretic pressure. If $\mu $ is a Sinai–Ruelle–Bowen (SRB) measure, then the Kaplan–Yorke conjecture is true under some additional conditions and the Lyapunov dimension of $\mu $ can be approximated gradually by the Hausdorff dimension of a sequence of hyperbolic sets $\{\Lambda _n\}_{n\geq 1}$. The limit behaviour of the Carathéodory singular dimension of $\Lambda _n$ on the unstable manifold with respect to the super-additive singular valued potential is also studied.
We show that a class of higher-dimensional hyperbolic endomorphisms admit absolutely continuous invariant probabilities whose densities are regular and vary differentiably with respect to the dynamical system. The maps we consider are skew-products given by $T(x,y) = (E (x), C(x,y))$, where E is an expanding map of $\mathbb {T}^u$ and C is a contracting map on each fiber. If $\inf |\!\det DT| \inf \| (D_yC)^{-1}\| ^{-2s}>1$ for some ${s<r-(({u+d})/{2}+1)}$, $r \geq 2$, and T satisfies a transversality condition between overlaps of iterates of T (a condition which we prove to be $C^r$-generic under mild assumptions), then the SRB measure $\mu _T$ of T is absolutely continuous and its density $h_T$ belongs to the Sobolev space $H^s({\mathbb {T}}^u\times {\mathbb {R}}^d)$. When $s> {u}/{2}$, it is also valid that the density $h_T$ is differentiable with respect to T. Similar results are proved for thermodynamical quantities for potentials close to the geometric potential.
We prove a joint partial equidistribution result for common perpendiculars with given density on equidistributing equidistant hypersurfaces, towards a measure supported on truncated stable leaves. We recover a result of Marklof on the joint partial equidistribution of Farey fractions at a given density, and give several analogous arithmetic applications, including in Bruhat–Tits trees.
Bratteli–Vershik models of compact, invertible zero-dimensional systems have been well studied. We take up such a study for polygonal billiards on the hyperbolic plane, thus considering these models beyond zero-dimensions. We describe the associated Bratteli models and show that these billiard dynamics can be described by Vershik maps.
Let $\Sigma $ be a closed hyperbolic surface. We study, for fixed g, the asymptotics of the number of those periodic geodesics in $\Sigma $ having at most length L and which can be written as the product of g commutators. The basic idea is to reduce these results to being able to count critical realizations of trivalent graphs in $\Sigma $. In the appendix, we use the same strategy to give a proof of Huber’s geometric prime number theorem.
We study equilibrium states for a class of non-uniformly expanding skew products, and show how a family of fiberwise transfer operators can be used to define the conditional measures along fibers of the product. We prove that the pushforward of the equilibrium state onto the base of the product is itself an equilibrium state for a Hölder potential defined via these fiberwise transfer operators.
We introduce a new method of constructing Birkhoff sections for pseudo-Anosov flows, which uses the connection between pseudo-Anosov flows and veering triangulations. This method allows for explicit constructions, as well as control over the Birkhoff section in terms of its Euler characteristic and the complexity of the boundary orbits. In particular, we show that any transitive pseudo-Anosov flow has a Birkhoff section with two boundary components.