We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the dynamics of dissipative billiard maps within planar convex domains. Such maps have a global attractor. We are interested in the topological and dynamical complexity of the attractor, in terms both of the geometry of the billiard table and of the strength of the dissipation. We focus on the study of an invariant subset of the attractor, the so-called Birkhoff attractor. On the one hand, we show that for a generic convex table with ‘pinched’ curvature, the Birkhoff attractor is a normally contracted manifold when the dissipation is strong. On the other hand, for a mild dissipation, we prove that, generically, the Birkhoff attractor is complicated, both from the topological and the dynamical points of view.
For a class of robustly transitive diffeomorphisms on ${\mathbb T}^4$ introduced by Shub [Topologically transitive diffeomorphisms of $T^4$. Proceedings of the Symposium on Differential Equations and Dynamical Systems (Lecture notes in Mathematics, 206). Ed. D. Chillingworth. Springer, Berlin, 1971, pp. 39–40], satisfying an additional bunching condition, we show that there exists a $C^2$ open and $C^r$ dense subset ${\mathcal U}^r$, $2\leq r\leq \infty $, such that any two hyperbolic points of $g\in {\mathcal U}^r$ with stable index $2$ are homoclinically related. As a consequence, every $g\in {\mathcal U}^r$ admits a unique homoclinic class associated to the hyperbolic periodic points with index $2$, and this homoclinic class coincides with the whole ambient manifold. Moreover, every $g\in {\mathcal U}^r$ admits at most one measure of maximal entropy, and every $g\in {\mathcal U}^{\infty }$ admits a unique measure of maximal entropy.
We perform a multifractal analysis of homological growth rates of oriented geodesics on hyperbolic surfaces. Our main result provides a formula for the Hausdorff dimension of level sets of prescribed growth rates in terms of a generalized Poincaré exponent of the Fuchsian group. We employ symbolic dynamics developed by Bowen and Series, ergodic theory and thermodynamic formalism to prove the analyticity of the dimension spectrum.
Let $(X,\mu ,T,d)$ be a metric measure-preserving dynamical system such that three-fold correlations decay exponentially for Lipschitz continuous observables. Given a sequence $(M_k)$ that converges to $0$ slowly enough, we obtain a strong dynamical Borel–Cantelli result for recurrence, that is, for $\mu $-almost every $x\in X$,
where $\mu (B_k(x)) = M_k$. In particular, we show that this result holds for Axiom A diffeomorphisms and equilibrium states under certain assumptions.
This paper studies various aspects of inverse limits of locally expanding affine linear maps on flat branched manifolds, which I call flat Wieler solenoids. Among the aspects studied are different types of cohomologies, the rates of mixing given by the Ruelle spectrum of the hyperbolic map acting on this space, and solutions of the cohomological equation in primitive substitution subshifts for Hölder functions. The overarching theme is that considerations of $\alpha $-Hölder regularity on Cantor sets go a long way.
We study shift spaces over a finite alphabet that can be approximated by mixing shifts of finite type in the sense of (pseudo)metrics connected to Ornstein’s $\bar {d}$ metric ($\bar {d}$-approachable shift spaces). The class of $\bar {d}$-approachable shifts can be considered as a topological analog of measure-theoretical Bernoulli systems. The notion of $\bar {d}$-approachability, together with a closely connected notion of $\bar {d}$-shadowing, was introduced by Konieczny, Kupsa, and Kwietniak [Ergod. Th. & Dynam. Sys.43(3) (2023), 943–970]. These notions were developed with the aim of significantly generalizing specification properties. Indeed, many popular variants of the specification property, including the classic one and the almost/weak specification property, ensure $\bar {d}$-approachability and $\bar {d}$-shadowing. Here, we study further properties and connections between $\bar {d}$-shadowing and $\bar {d}$-approachability. We prove that $\bar {d}$-shadowing implies $\bar {d}$-stability (a notion recently introduced by Tim Austin). We show that for surjective shift spaces with the $\bar {d}$-shadowing property the Hausdorff pseudodistance ${\bar d}^{\mathrm {H}}$ between shift spaces induced by $\bar {d}$ is the same as the Hausdorff distance between their simplices of invariant measures with respect to the Hausdorff distance induced by Ornstein’s metric $\bar {d}$ between measures. We prove that without $\bar {d}$-shadowing this need not to be true (it is known that the former distance always bounds the latter). We provide examples illustrating these results, including minimal examples and proximal examples of shift spaces with the $\bar {d}$-shadowing property. The existence of such shift spaces was announced in the earlier paper mentioned above. It shows that $\bar {d}$-shadowing indeed generalizes the specification property.
Under certain conditions, we construct a countable Markov partition for pointwise hyperbolic diffeomorphism $f:M\rightarrow M$ on an open invariant subset $O\subset M$, which allows the Lyapunov exponents to be zero. From this partition, we define a symbolic extension that is finite-to-one and onto a subset of O that carries the same finite f-invariant measures as O. Our method relies upon shadowing theory of a recurrent-pointwise-pseudo-orbit that we introduce. As a canonical application, we estimate the number of closed orbits for f.
Given a two-sided shift space on a finite alphabet and a continuous potential function, we give conditions under which an equilibrium measure can be described using a construction analogous to Hausdorff measure that goes back to the work of Bowen. This construction was previously applied to smooth uniformly and partially hyperbolic systems by the first author, Pesin, and Zelerowicz. Our results here apply to all subshifts of finite type and Hölder continuous potentials, but extend beyond this setting, and we also apply them to shift spaces with synchronizing words.
For a proper, Gromov-hyperbolic metric space and a discrete, non-elementary, group of isometries, we define a natural subset of the limit set at infinity of the group called the ergodic limit set. The name is motivated by the fact that every ergodic measure which is invariant for the geodesic flow on the quotient metric space is concentrated on geodesics with endpoints belonging to the ergodic limit set. We refine the classical Bishop–Jones theorem proving that the packing dimension of the ergodic limit set coincides with the critical exponent of the group.
In this note, we examine the proportion of periodic orbits of Anosov flows that lie in an infinite zero density subset of the first homology group. We show that on a logarithmic scale we get convergence to a discrete fractal dimension.
In this paper, we study transitivity of partially hyperbolic endomorphisms of the two torus whose action in the first homology group has two integer eigenvalues of moduli greater than one. We prove that if the Jacobian is everywhere greater than the modulus of the largest eigenvalue, then the map is robustly transitive. For this, we introduce Blichfedt’s theorem as a tool for extracting dynamical information from the action of a map in homology. We also treat the case of specially partially hyperbolic endomorphisms, for which we obtain a complete dichotomy: either the map is transitive and conjugated to its linear part, or its unstable foliation must contain an annulus which may either be wandering or periodic.
We prove that for $C^{1+\theta }$, $\theta $-bunched, dynamically coherent partially hyperbolic diffeomorphisms, the stable and unstable holonomies between center leaves are $C^1$, and the derivative depends continuously on the points and on the map. Also for $C^{1+\theta }$, $\theta $-bunched partially hyperbolic diffeomorphisms, the derivative cocycle restricted to the center bundle has invariant continuous holonomies which depend continuously on the map. This generalizes previous results by Pugh, Shub, and Wilkinson; Burns and Wilkinson; Brown; Obata; Avila, Santamaria, and Viana; and Marin.
We compare the dimension of a non-invertible self-affine set to the dimension of the respective invertible self-affine set. In particular, for generic planar self-affine sets, we show that the dimensions coincide when they are large and differ when they are small. Our study relies on thermodynamic formalism where, for dominated and irreducible matrices, we completely characterise the behaviour of the pressures.
Feng and Huang [Variational principle for weighted topological pressure. J. Math. Pures Appl. (9)106 (2016), 411–452] introduced weighted topological entropy and pressure for factor maps between dynamical systems and established its variational principle. Tsukamoto [New approach to weighted topological entropy and pressure. Ergod. Th. & Dynam. Sys.43 (2023), 1004–1034] redefined those invariants quite differently for the simplest case and showed via the variational principle that the two definitions coincide. We generalize Tsukamoto’s approach, redefine the weighted topological entropy and pressure for higher dimensions, and prove the variational principle. Our result allows for an elementary calculation of the Hausdorff dimension of affine-invariant sets such as self-affine sponges and certain sofic sets that reside in Euclidean space of arbitrary dimension.
We study the joint distribution of values of a pair consisting of a quadratic form ${\mathbf q}$ and a linear form ${\mathbf l}$ over the set of integral vectors, a problem initiated by Dani and Margulis [Orbit closures of generic unipotent flows on homogeneous spaces of $\mathrm{SL}_3(\mathbb{R})$. Math. Ann.286 (1990), 101–128]. In the spirit of the celebrated theorem of Eskin, Margulis and Mozes on the quantitative version of the Oppenheim conjecture, we show that if $n \ge 5$, then under the assumptions that for every $(\alpha , \beta ) \in {\mathbb {R}}^2 \setminus \{ (0,0) \}$, the form $\alpha {\mathbf q} + \beta {\mathbf l}^2$ is irrational and that the signature of the restriction of ${\mathbf q}$ to the kernel of ${\mathbf l}$ is $(p, n-1-p)$, where ${3\le p\le n-2}$, the number of vectors $v \in {\mathbb {Z}}^n$ for which $\|v\| < T$, $a < {\mathbf q}(v) < b$ and $c< {\mathbf l}(v) < d$ is asymptotically $ C({\mathbf q}, {\mathbf l})(d-c)(b-a)T^{n-3}$ as $T \to \infty $, where $C({\mathbf q}, {\mathbf l})$ only depends on ${\mathbf q}$ and ${\mathbf l}$. The density of the set of joint values of $({\mathbf q}, {\mathbf l})$ under the same assumptions is shown by Gorodnik [Oppenheim conjecture for pairs consisting of a linear form and a quadratic form. Trans. Amer. Math. Soc.356(11) (2004), 4447–4463].
Let ${{\mathcal {H}}}$ be a stratum of translation surfaces with at least two singularities, let $m_{{{\mathcal {H}}}}$ denote the Masur-Veech measure on ${{\mathcal {H}}}$, and let $Z_0$ be a flow on $({{\mathcal {H}}}, m_{{{\mathcal {H}}}})$ obtained by integrating a Rel vector field. We prove that $Z_0$ is mixing of all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for more general spaces $({\mathcal L}, m_{{\mathcal L}})$, where ${\mathcal L} \subset {{\mathcal {H}}}$ is an orbit-closure for the action of $G = \operatorname {SL}_2({\mathbb {R}})$ (i.e., an affine invariant subvariety) and $m_{{\mathcal L}}$ is the natural measure. These results are conditional on a forthcoming measure classification result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of $Z_0$ with respect to any of the measures $m_{{{\mathcal L}}}$ is zero.
We prove a multidimensional conformal version of the scale recurrence lemma of Moreira and Yoccoz [Stable intersections of regular Cantor sets with large Hausdorff dimensions. Ann. of Math. (2)154(1) (2001), 45–96] for Cantor sets in the complex plane. We then use this new recurrence lemma, together with Moreira’s ideas in [Geometric properties of images of Cartesian products of regular Cantor sets by differentiable real maps. Math. Z.303 (2023), 3], to prove that under the right hypothesis for the Cantor sets $K_1,\ldots ,K_n$ and the function $h:\mathbb {C}^{n}\to \mathbb {R}^{l}$, the following formula holds:
The first part of this work is devoted to the study of higher derivatives of pressure functions of Hölder potentials on shift spaces with finitely many symbols. By describing the derivatives of pressure functions via the central limit theorem for the associated random processes, we discover some rigid relationships between derivatives of various orders. The rigidity imposes obstructions on fitting candidate convex analytic functions by pressure functions of Hölder potentials globally, which answers a question of Kucherenko and Quas. In the second part of the work, we consider fitting candidate analytic germs by pressure functions of locally constant potentials. We prove that all 1-level candidate germs can be realised by pressures of some locally constant potentials, as long as the number of symbols in the symbolic set is large enough. There are also some results on fitting 2-level germs by pressures of locally constant potentials obtained in the work.
Given the full shift over a countable state space on a countable amenable group, we develop its thermodynamic formalism. First, we introduce the concept of pressure and, using tiling techniques, prove its existence and further properties, such as an infimum rule. Next, we extend the definitions of different notions of Gibbs measures and prove their existence and equivalence, given some regularity and normalization criteria on the potential. Finally, we provide a family of potentials that nontrivially satisfy the conditions for having this equivalence and a nonempty range of inverse temperatures where uniqueness holds.