To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the context of discrete nonautonomous dynamics, we prove that the homeomorphisms in the linearization theorem are $C^2$ diffeomorphisms. In contrast to other related works, our result does not involve non-resonance conditions or spectral gaps. Our approach is based on the interlacing of the properties of nonautonomous hyperbolicity of the linear part, and boundedness and Lipschitzness of the nonlinearities. Moreover, we propose a functional approach to find conditions for regularity of arbitrary degree.
For a $C^1$ non-conformal repeller, this paper proves that there exists an ergodic measure of full Carathéodory singular dimension. For an average conformal hyperbolic set of a $C^1$ diffeomorphism, this paper constructs a Borel probability measure (with support strictly inside the repeller) of full Hausdorff dimension. If the average conformal hyperbolic set is of a $C^{1+\alpha }$ diffeomorphism, this paper shows that there exists an ergodic measure of maximal dimension.
We extend Katok’s result on ‘the approximation of hyperbolic measures by horseshoes’ to Banach cocycles. More precisely, let f be a $C^r(r>1)$ diffeomorphism of a compact Riemannian manifold M, preserving an ergodic hyperbolic measure $\mu $ with positive entropy, and let $\mathcal {A}$ be a Hölder continuous cocycle of bounded linear operators acting on a Banach space $\mathfrak {X}$. We prove that there is a sequence of horseshoes for f and dominated splittings for $\mathcal {A}$ on the horseshoes, such that not only the measure theoretic entropy of f but also the Lyapunov exponents of $\mathcal {A}$ with respect to $\mu $ can be approximated by the topological entropy of f and the Lyapunov exponents of $\mathcal {A}$ on the horseshoes, respectively. As an application, we show the continuity of sub-additive topological pressure for Banach cocycles.
We construct measures of maximal u-entropy for any partially hyperbolic diffeomorphism that factors over an Anosov torus automorphism and has mostly contracting center direction. The space of such measures has finite dimension, and its extreme points are ergodic measures with pairwise disjoint supports.
For typical cocycles over subshifts of finite type, we show that for any given orbit segment, we can construct a periodic orbit such that it shadows the given orbit segment and that the product of the cocycle along its orbit is a proximal linear map. Using this result, we show that suitable assumptions on the periodic orbits have consequences over the entire subshift.
We show that a fibre-preserving self-diffeomorphism which has hyperbolic splittings along the fibres on a compact principal torus bundle is topologically conjugate to a map that is linear in the fibres.
We introduce a notion of sensitivity with respect to a continuous real-valued bounded map which provides a sufficient condition for a continuous transformation, acting on a Baire metric space, to exhibit a Baire generic subset of points with historic behavior (also known as irregular points). The applications of this criterion recover, and extend, several known theorems on the genericity of the irregular set, in addition to yielding a number of new results, including information on the irregular set of geodesic flows, in both negative and non-positive curvature, and semigroup actions.
In this paper, we study the ergodicity of the geodesic flows on surfaces with no focal points. Let M be a smooth connected and closed surface equipped with a $C^{\infty }$ Riemannian metric g, whose genus $\mathfrak {g} \geq 2$. Suppose that $(M,g)$ has no focal points. We prove that the geodesic flow on the unit tangent bundle of M is ergodic with respect to the Liouville measure, under the assumption that the set of points on M with negative curvature has at most finitely many connected components.
The manifold M is a Riemannian, boundaryless, and compact manifold with $\dim M\geq 2$, and f is a $C^{1+\beta }$ ($\kern0.3pt\beta>0$) diffeomorphism of M. $\varphi $ is a Hölder continuous potential on M. We construct an invariant and absolutely continuous family of measures (with transformation relations defined by $\varphi $), which sit on local unstable leaves. We present two main applications. First, given an ergodic homoclinic class $H_\chi (p)$, we prove that $\varphi $ admits a local equilibrium state on $H_\chi (p)$ if and only if $\varphi $ is ‘recurrent on $H_\chi (p)$’ (a condition tested by counting periodic points), and one of the leaf measures gives a positive measure to a set of positively recurrent hyperbolic points; and if an equilibrium measure exists, the said invariant and absolutely continuous family of measures constitute as its conditional measures. An immediate corollary is the local product structure of hyperbolic equilibrium states. Second, we prove a Ledrappier–Young property for hyperbolic equilibrium states: if $\varphi $ admits a conformal family of leaf measures and a hyperbolic local equilibrium state, then the leaf measures of the invariant family (respective to $\varphi $) are equivalent to the conformal measures (on a full measure set). This extends the celebrated result by Ledrappier and Young for hyperbolic Sinai–Ruelle–Bowen measures, which states that a hyperbolic equilibrium state of the geometric potential (with pressure zero) has conditional measures on local unstable leaves which are absolutely continuous with respect to the Riemannian volume of these leaves.
We study the billiard dynamics in annular tables between two eccentric circles. As the center and the radius of the inner circle changes, a two-parameters map is defined by the first return of trajectories to the obstacle. We obtain an increasing family of hyperbolic sets, in the sense of the Hausdorff distance, as the radius goes to zero and the center of the obstacle approximates the outer boundary. The dynamics on each of these sets is conjugate to a shift with an increasing number of symbols. We also show that for many parameters, the system presents quadratic homoclinic tangencies whose bifurcation gives rise to elliptical islands (conservative Newhouse phenomenon). Thus, for many parameters, we obtain the coexistence of a ‘large’ hyperbolic set with many elliptical islands.
We prove a random Ruelle–Perron–Frobenius theorem and the existence of relative equilibrium states for a class of random open and closed interval maps, without imposing transitivity requirements, such as mixing and covering conditions, which are prevalent in the literature. This theorem provides the existence and uniqueness of random conformal and invariant measures with exponential decay of correlations, and allows us to expand the class of examples of (random) dynamical systems amenable to multiplicative ergodic theory and the thermodynamic formalism. Applications include open and closed non-transitive random maps, and a connection between Lyapunov exponents and escape rates through random holes. We are also able to treat random intermittent maps with geometric potentials.
We discuss a metric description of the divergence of a (projectively) Anosov flow in dimension 3, in terms of its associated expansion rates and give metric and contact geometric characterizations of when a projectively Anosov flow is Anosov. We then study the symmetries that the existence of an invariant volume form yields on the geometry of an Anosov flow, from various viewpoints of the theory of contact hyperbolas, Reeb dynamics, and Liouville geometry, and give characterizations of when an Anosov flow is volume preserving, in terms of those theories. We finally use our study to show that the bi-contact surgery operations of Salmoiraghi [Surgery on Anosov flows using bi-contact geometry. Preprint, 2021, arXiv:2104.07109; and Goodman surgery and projectively Anosov flows. Preprint, 2022, arXiv:2202.01328] can be applied in an arbitrary small neighborhood of a periodic orbit of any Anosov flow. In particular, we conclude that the Goodman surgery of Anosov flows can be performed using the bi-contact surgery operations of Salmoiraghi [Goodman surgery and projectively Anosov flows. Preprint, 2022, arXiv:2202.01328].
Let $k\geq 2$ and $(X_{i}, \mathcal {T}_{i}), i=1,\ldots ,k$, be $\mathbb {Z}^{d}$-actions topological dynamical systems with $\mathcal {T}_i:=\{T_i^{\textbf {g}}:X_i{\rightarrow } X_i\}_{\textbf {g}\in \mathbb {Z}^{d}}$, where $d\in \mathbb {N}$ and $f\in C(X_{1})$. Assume that for each $1\leq i\leq k-1$, $(X_{i+1}, \mathcal {T}_{i+1})$ is a factor of $(X_{i}, \mathcal {T}_{i})$. In this paper, we introduce the weighted topological pressure $P^{\textbf {a}}(\mathcal {T}_{1},f)$ and weighted measure-theoretic entropy $h_{\mu }^{\textbf {a}}(\mathcal {T}_{1})$ for $\mathbb {Z}^{d}$-actions, and establish a weighted variational principle as
This result not only generalizes some well-known variational principles about topological pressure for compact or non-compact sets, but also improves the variational principle for weighted topological pressure in [16] from $\mathbb {Z}_{+}$-action topological dynamical systems to $\mathbb {Z}^{d}$-actions topological dynamical systems.
For a pseudo-Anosov flow $\varphi $ without perfect fits on a closed $3$-manifold, Agol–Guéritaud produce a veering triangulation $\tau $ on the manifold M obtained by deleting the singular orbits of $\varphi $. We show that $\tau $ can be realized in M so that its 2-skeleton is positively transverse to $\varphi $, and that the combinatorially defined flow graph $\Phi $ embedded in M uniformly codes the orbits of $\varphi $ in a precise sense. Together with these facts, we use a modified version of the veering polynomial, previously introduced by the authors, to compute the growth rates of the closed orbits of $\varphi $ after cutting M along certain transverse surfaces, thereby generalizing the work of McMullen in the fibered setting. These results are new even in the case where the transverse surface represents a class in the boundary of a fibered cone of M. Our work can be used to study the flow $\varphi $ on the original closed manifold. Applications include counting growth rates of closed orbits after cutting along closed transverse surfaces, defining a continuous, convex entropy function on the ‘positive’ cone in $H^1$ of the cut-open manifold, and answering a question of Leininger about the closure of the set of all stretch factors arising as monodromies within a single fibered cone of a $3$-manifold. This last application connects to the study of endperiodic automorphisms of infinite-type surfaces and the growth rates of their periodic points.
Consider a topologically transitive countable Markov shift $\Sigma $ and a summable locally constant potential $\phi $ with finite Gurevich pressure and $\mathrm {Var}_1(\phi ) < \infty $. We prove the existence of the limit $\lim _{t \to \infty } \mu _t$ in the weak$^\star $ topology, where $\mu _t$ is the unique equilibrium state associated to the potential $t\phi $. In addition, we present examples where the limit at zero temperature exists for potentials satisfying more general conditions.
We prove that for any non-degenerate dendrite D, there exist topologically mixing maps $F : D \to D$ and $f : [0, 1] \to [0, 1]$ such that the natural extensions (as known as shift homeomorphisms) $\sigma _F$ and $\sigma _f$ are conjugate, and consequently the corresponding inverse limits are homeomorphic. Moreover, the map f does not depend on the dendrite D and can be selected so that the inverse limit $\underleftarrow {\lim } (D,F)$ is homeomorphic to the pseudo-arc. The result extends to any finite number of dendrites. Our work is motivated by, but independent of, the recent result of the first and third author on conjugation of Lozi and Hénon maps to natural extensions of dendrite maps.
We find generalized conformal measures and equilibrium states for random dynamics generated by Ruelle expanding maps, under which the dynamics exhibits exponential decay of correlations. This extends results by Baladi [Correlation spectrum of quenched and annealed equilibrium states for random expanding maps. Comm. Math. Phys.186 (1997), 671–700] and Carvalho et al [Semigroup actions of expanding maps. J. Stat. Phys.116(1) (2017), 114–136], where the randomness is driven by an independent and identically distributed process and the phase space is assumed to be compact. We give applications in the context of weighted non-autonomous iterated function systems, free semigroup actions and introduce a boundary of equilibria for not necessarily free semigroup actions.
We derive upper and lower bounds for the Assouad and lower dimensions of self-affine measures in $\mathbb {R}^d$ generated by diagonal matrices and satisfying suitable separation conditions. The upper and lower bounds always coincide for $d=2,3$, yielding precise explicit formulae for those dimensions. Moreover, there are easy-to-check conditions guaranteeing that the bounds coincide for $d \geqslant 4$. An interesting consequence of our results is that there can be a ‘dimension gap’ for such self-affine constructions, even in the plane. That is, we show that for some self-affine carpets of ‘Barański type’ the Assouad dimension of all associated self-affine measures strictly exceeds the Assouad dimension of the carpet by some fixed $\delta>0$ depending only on the carpet. We also provide examples of self-affine carpets of ‘Barański type’ where there is no dimension gap and in fact the Assouad dimension of the carpet is equal to the Assouad dimension of a carefully chosen self-affine measure.
In this paper, we focus on dynamical properties of (real) convex projective surfaces. Our main theorem provides an asymptotic formula for the number of free homotopy classes with roughly the same renormalized Hilbert length for two distinct convex real projective structures. The correlation number in this asymptotic formula is characterized in terms of their Manhattan curve. We show that the correlation number is not uniformly bounded away from zero on the space of pairs of hyperbolic surfaces, answering a question of Schwartz and Sharp. In contrast, we provide examples of diverging sequences, defined via cubic rays, along which the correlation number stays larger than a uniform strictly positive constant. In the last section, we extend the correlation theorem to Hitchin representations.
We construct one-dimensional foliations which are subfoliations of two-dimensional foliations in $3$-manifolds. The subfoliation is by quasigeodesics in each two-dimensional leaf, but it is not funnel: not all quasigeodesics share a common ideal point in most leaves.