To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Katok [Lyapunov exponents, entropy and periodic points of diffeomorphisms. Publ. Math. Inst. Hautes Études Sci.51 (1980), 137–173] conjectured that every $C^{2}$ diffeomorphism f on a Riemannian manifold has the intermediate entropy property, that is, for any constant $c \in [0, h_{\mathrm {top}}(f))$, there exists an ergodic measure $\mu $ of f satisfying $h_{\mu }(f)=c$. In this paper, we obtain a conditional intermediate metric entropy property and two conditional intermediate Birkhoff average properties for basic sets of flows that characterize the refined roles of ergodic measures in the invariant ones. In this process, we establish a ‘multi-horseshoe’ entropy-dense property and use it to get the goal combined with conditional variational principles. We also obtain the same result for singular hyperbolic attractors.
We prove that under restrictions on the fiber, any fibered partially hyperbolic system over a nilmanifold is leaf conjugate to a smooth model that is isometric on the fibers and descends to a hyperbolic nilmanifold automorphism on the base. One ingredient is a result of independent interest generalizing a result of Hiraide: an Anosov homeomorphism of a nilmanifold is topologically conjugate to a hyperbolic nilmanifold automorphism.
We give a $C^1$-perturbation technique for ejecting an a priori given finite set of periodic points preserving a given finite set of homo/heteroclinic intersections from a chain recurrence class of a periodic point. The technique is first stated under a simpler setting called a Markov iterated function system, a two-dimensional iterated function system in which the compositions are chosen in a Markovian way. Then we apply the result to the setting of three-dimensional partially hyperbolic diffeomorphisms.
We study a class of ordinary differential equations with a non-Lipschitz point singularity that admits non-unique solutions through this point. As a selection criterion, we introduce stochastic regularizations depending on a parameter $\nu $: the regularized dynamics is globally defined for each $\nu> 0$, and the original singular system is recovered in the limit of vanishing $\nu $. We prove that this limit yields a unique statistical solution independent of regularization when the deterministic system possesses a chaotic attractor having a physical measure with the convergence to equilibrium property. In this case, solutions become spontaneously stochastic after passing through the singularity: they are selected randomly with an intrinsic probability distribution.
For every $r\in \mathbb {N}_{\geq 2}\cup \{\infty \}$, we prove a $C^r$-orbit connecting lemma for dynamically coherent and plaque expansive partially hyperbolic diffeomorphisms with one-dimensional orientation preserving center bundle. To be precise, for such a diffeomorphism f, if a point y is chain attainable from x through pseudo-orbits, then for any neighborhood U of x and any neighborhood V of y, there exist true orbits from U to V by arbitrarily $C^r$-small perturbations. As a consequence, we prove that for $C^r$-generic diffeomorphisms in this class, periodic points are dense in the chain recurrent set, and chain transitivity implies transitivity.
In this paper, we give necessary conditions for an $N$-expansive homeomorphism of a compact metric space to be nonchaotic in the Li–Yorke sense. As application we give a partial answer to a conjecture in [2].
While on the one hand, chaotic dynamical systems can be predicted for all time given exact knowledge of an initial state, they are also in many cases rapidly mixing, meaning that smooth probabilistic information (quantified by measures) on the system’s state has negligible value for predicting the long-term future. However, an understanding of the long-term predictive value of intermediate kinds of probabilistic information is necessary in various physical problems, and largely remains lacking. Of particular interest in data assimilation and linear response theory are the conditional measures of the Sinai–Ruelle–Bowen (SRB) measure on zero sets of general smooth functions of the phase space. In this paper we give rigorous and numerical evidence that such measures generically converge back under the dynamics to the full SRB measures, exponentially quickly. We call this property conditional mixing. While conditional mixing typically cannot be proven from standard transfer operator theory, we will prove that conditional mixing holds in a class of generalized baker’s maps, and demonstrate it numerically in some non-Markovian piecewise hyperbolic maps. Conditional mixing provides a natural limit on the effectiveness of long-term forecasting of chaotic systems via partial observations, and appears key to proving the existence of linear response outside the setting of smooth uniform hyperbolicity.
We show convergence of small eigenvalues for geometrically finite hyperbolic n-manifolds under strong limits. For a class of convergent convex sets in a strongly convergent sequence of Kleinian groups, we use the spectral gap of the limit manifold and the exponentially mixing property of the geodesic flow along the strongly convergent sequence to find asymptotically uniform counting formulas for the number of orthogeodesics between the convex sets. In particular, this provides asymptotically uniform counting formulas (with respect to length) for orthogeodesics between converging Margulis tubes, geodesic loops based at converging basepoints, and primitive closed geodesics.
Given a dynamical system, we prove that the shortest distance between two n-orbits scales like n to a power even when the system has slow mixing properties, thus building and improving on results of Barros, Liao and the first author [On the shortest distance between orbits and the longest common substring problem. Adv. Math.344 (2019), 311–339]. We also extend these results to flows. Finally, we give an example for which the shortest distance between two orbits has no scaling limit.
Reflection in a strictly convex bounded planar billiard acts on the space of oriented lines and preserves a standard area form. A caustic is a curve C whose tangent lines are reflected by the billiard to lines tangent to C. The famous Birkhoff conjecture states that the only strictly convex billiards with a foliation by closed caustics near the boundary are ellipses. By Lazutkin’s theorem, there always exists a Cantor family of closed caustics approaching the boundary. In the present paper, we deal with an open billiard, whose boundary is a strictly convex embedded (non-closed) curve $\gamma $. We prove that there exists a domain U adjacent to $\gamma $ from the convex side and a $C^\infty $-smooth foliation of $U\cup \gamma $ whose leaves are $\gamma $ and (non-closed) caustics of the billiard. This generalizes a previous result by Melrose on the existence of a germ of foliation as above. We show that there exists a continuum of above foliations by caustics whose germs at each point in $\gamma $ are pairwise different. We prove a more general version of this statement for $\gamma $ being an (immersed) arc. It also applies to a billiard bounded by a closed strictly convex curve $\gamma $ and yields infinitely many ‘immersed’ foliations by immersed caustics. For the proof of the above results, we state and prove their analogue for a special class of area-preserving maps generalizing billiard reflections: the so-called $C^{\infty }$-lifted strongly billiard-like maps. We also prove a series of results on conjugacy of billiard maps near the boundary for open curves of the above type.
For smooth random dynamical systems we consider the quenched linear and higher-order response of equivariant physical measures to perturbations of the random dynamics. We show that the spectral perturbation theory of Gouëzel, Keller and Liverani [28, 33], which has been applied to deterministic systems with great success, may be adapted to study random systems that possess good mixing properties. As a consequence, we obtain general linear and higher-order response results, as well as the differentiability of the variance in quenched central limit theorems (CLTs), for random dynamical systems (RDSs) that we then apply to random Anosov diffeomorphisms and random U(1) extensions of expanding maps. We emphasize that our results apply to random dynamical systems over a general ergodic base map, and are obtained without resorting to infinite-dimensional multiplicative ergodic theory.
In this paper, we consider the convergence rate with respect to Wasserstein distance in the invariance principle for deterministic non-uniformly hyperbolic systems. Our results apply to uniformly hyperbolic systems and large classes of non-uniformly hyperbolic systems including intermittent maps, Viana maps, unimodal maps and others. Furthermore, as a non-trivial application to the homogenization problem, we investigate the Wasserstein convergence rate of a fast–slow discrete deterministic system to a stochastic differential equation.
We develop a geometric method to establish the existence and uniqueness of equilibrium states associated to some Hölder potentials for center isometries (as are regular elements of Anosov actions), in particular, the entropy maximizing measure and the SRB measure. A characterization of equilibrium states in terms of their disintegrations along stable and unstable foliations is also given. Finally, we show that the resulting system is isomorphic to a Bernoulli scheme.
In this work, we explore the dynamical implications of a spectral sequence analysis of a filtered chain complex associated to a non-singular Morse–Smale (NMS) flow $\varphi $ on a closed orientable $3$-manifold $M^3$ with no heteroclinic trajectories connecting saddle periodic orbits. We introduce the novel concepts of cancellations and reductions of pairs of periodic orbits based on Franks’ morsification and Smale’s cancellation theorems. The main goal is to establish an algebraic-dynamical correspondence between the unfolding of this spectral sequence associated to $\varphi $ and a family of flows obtained by cancelling and reducing pairs of periodic orbits of $\varphi $ on $M^3$. This correspondence is achieved through a spectral sequence sweeping algorithm (SSSA), which determines the order in which these cancellations and reductions of periodic orbits occur, producing a family of NMS flows that reaches a core flow when the spectral sequence converges.
Given a locally finite graph $\Gamma $, an amenable subgroup G of graph automorphisms acting freely and almost transitively on its vertices, and a G-invariant activity function $\unicode{x3bb} $, consider the free energy $f_G(\Gamma ,\unicode{x3bb} )$ of the hardcore model defined on the set of independent sets in $\Gamma $ weighted by $\unicode{x3bb} $. Under the assumption that G is finitely generated and its word problem can be solved in exponential time, we define suitable ensembles of hardcore models and prove the following: if $\|\unicode{x3bb} \|_\infty < \unicode{x3bb} _c(\Delta )$, there exists a randomized $\epsilon $-additive approximation scheme for $f_G(\Gamma ,\unicode{x3bb} )$ that runs in time $\mathrm {poly}((1+\epsilon ^{-1})\lvert \Gamma /G \rvert )$, where $\unicode{x3bb} _c(\Delta )$ denotes the critical activity on the $\Delta $-regular tree. In addition, if G has a finite index linearly ordered subgroup such that its algebraic past can be decided in exponential time, we show that the algorithm can be chosen to be deterministic. However, we observe that if $\|\unicode{x3bb} \|_\infty> \unicode{x3bb} _c(\Delta )$, there is no efficient approximation scheme, unless $\mathrm {NP} = \mathrm {RP}$. This recovers the computational phase transition for the partition function of the hardcore model on finite graphs and provides an extension to the infinite setting. As an application in symbolic dynamics, we use these results to develop efficient approximation algorithms for the topological entropy of subshifts of finite type with enough safe symbols, we obtain a representation formula of pressure in terms of random trees of self-avoiding walks, and we provide new conditions for the uniqueness of the measure of maximal entropy based on the connective constant of a particular associated graph.
We construct two new classes of topological dynamical systems; one is a factor of a one-sided shift of finite type while the second is a factor of the two-sided shift. The data are a finite graph which presents the shift of finite type, a second finite directed graph and a pair of embeddings of it into the first, satisfying certain conditions. The factor is then obtained from a simple idea based on binary expansion of real numbers. In both cases, we construct natural metrics on the factors and, in the second case, this makes the system a Smale space, in the sense of Ruelle. We compute various algebraic invariants for these systems, including the homology for Smale space developed by the author and the K-theory of various $C^{*}$-algebras associated to them, in terms of the pair of original graphs.
We give an example of a path-wise connected open set of $C^{\infty }$ partially hyperbolic endomorphisms on the $2$-torus, on which the (unique) Sinai–Ruelle–Bowen (SRB) measure exists for each system and varies smoothly depending on the system, while the sign of its central Lyapunov exponent changes.
For a non-conformal repeller $\Lambda $ of a $C^{1+\alpha }$ map f preserving an ergodic measure $\mu $ of positive entropy, this paper shows that the Lyapunov dimension of $\mu $ can be approximated gradually by the Carathéodory singular dimension of a sequence of horseshoes. For a $C^{1+\alpha }$ diffeomorphism f preserving a hyperbolic ergodic measure $\mu $ of positive entropy, if $(f, \mu )$ has only two Lyapunov exponents $\unicode{x3bb} _u(\mu )>0>\unicode{x3bb} _s(\mu )$, then the Hausdorff or lower box or upper box dimension of $\mu $ can be approximated by the corresponding dimension of the horseshoes $\{\Lambda _n\}$. The same statement holds true if f is a $C^1$ diffeomorphism with a dominated Oseledet’s splitting with respect to $\mu $.
In this paper, we address the issue of synchronization of coupled systems, introducing concepts of local and global synchronization for a class of systems that extend the model of coupled map lattices. A criterion for local synchronization is given; numerical experiments are exhibited to illustrate the criteria and also to raise some questions in the end of the text.