We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For microscale heterogeneous partial differential equations (PDEs), this article further develops novel theory and methodology for their macroscale mathematical/asymptotic homogenization. This article specifically encompasses the case of quasi-periodic heterogeneity with finite scale separation: no scale separation limit is required. A key innovation herein is to analyse the ensemble of all phase-shifts of the heterogeneity. Dynamical systems theory then frames the homogenization as a slow manifold of the ensemble. Depending upon any perceived scale separation within the quasi-periodic heterogeneity, the homogenization may be done in either one step or two sequential steps: the results are equivalent. The theory not only assures us of the existence and emergence of an exact homogenization at finite scale separation, it also provides a practical systematic method to construct the homogenization to any specified order. For a class of heterogeneities, we show that the macroscale homogenization is potentially valid down to lengths which are just twice that of the microscale heterogeneity! This methodology complements existing well-established results by providing a new rigorous and flexible approach to homogenization that potentially also provides correct macroscale initial and boundary conditions, treatment of forcing and control, and analysis of uncertainty.
We present a modified version of the well-known geometric Lorenz attractor. It consists of a $C^1$ open set ${\mathcal O}$ of vector fields in ${\mathbb R}^3$ having an attracting region ${\mathcal U}$ satisfying three properties. Namely, a unique singularity $\sigma $; a unique attractor $\Lambda $ including the singular point and the maximal invariant in ${\mathcal U}$ has at most two chain recurrence classes, which are $\Lambda $ and (at most) one hyperbolic horseshoe. The horseshoe and the singular attractor have a collision along with the union of $2$ codimension $1$ submanifolds which split ${\mathcal O}$ into three regions. By crossing this collision locus, the attractor and the horseshoe may merge into a two-sided Lorenz attractor, or they may exchange their nature: the Lorenz attractor expels the singular point $\sigma $ and becomes a horseshoe, and the horseshoe absorbs $\sigma $ becoming a Lorenz attractor.
In this paper, we consider the Cauchy problem for an inviscid compressible Oldroyd-B model in three dimensions. The global well posedness of strong solutions and the associated time-decay estimates in Sobolev spaces are established near an equilibrium state. The vanishing of viscosity is the main challenge compared with [47] where the viscosity coefficients are included and the decay rates for the highest-order derivatives of the solutions seem not optimal. One of the main objectives of this paper is to develop some new dissipative estimates such that the smallness of the initial data and decay rates are independent of the viscosity. Moreover, we prove that the decay rates for the highest-order derivatives of the solutions are optimal, which is of independent interest. Our proof relies on Fourier theory and delicate energy method.
The self-interaction force of dislocation curves in metals depends on the local arrangement of the atoms and on the non-local interaction between dislocation curve segments. While these non-local segment–segment interactions can be accurately described by linear elasticity when the segments are further apart than the atomic scale of size
$\varepsilon$
, this model breaks down and blows up when the segments are
$O(\varepsilon)$
apart. To separate the non-local interactions from the local contribution, various models depending on
$\varepsilon$
have been constructed to account for the non-local term. However, there are no quantitative comparisons available between these models. This paper makes such comparisons possible by expanding the self-interaction force in these models in
$\varepsilon$
beyond the O(1)-term. Our derivation of these expansions relies on asymptotic analysis. The practical use of these expansions is demonstrated by developing numerical schemes for them, and by – for the first time – bounding the corresponding discretisation error.
In this paper, we consider an eigenvalue problem for ordinary differential equations of fourth order with a spectral parameter in the boundary conditions. The location of eigenvalues on real axis, the structure of root subspaces and the oscillation properties of eigenfunctions of this problem are investigated, and asymptotic formulas for the eigenvalues and eigenfunctions are found. Next, by the use of these properties, we establish sufficient conditions for subsystems of root functions of the considered problem to form a basis in the space $L_p,1 < p < \infty$.
The Liouville equation is of fundamental importance in the derivation of continuum models for physical systems which are approximated by interacting particles. However, when particles undergo instantaneous interactions such as collisions, the derivation of the Liouville equation must be adapted to exclude non-physical particle positions, and include the effect of instantaneous interactions. We present the weak formulation of the Liouville equation for interacting particles with general particle dynamics and interactions, and discuss the results using two examples.
The Kirchhoff approximation is widely used to describe the scatter of elastodynamic waves. It simulates the scattered field as the convolution of the free-space Green’s tensor with the geometrical elastodynamics approximation to the total field on the scatterer surface and, therefore, cannot be used to describe nongeometrical phenomena, such as head waves. The aim of this paper is to demonstrate that an alternative approximation, the convolution of the far-field asymptotics of the Lamb’s Green’s tensor with incident surface tractions, has no such limitation. This is done by simulating the scatter of a critical Gaussian beam of transverse motions from an infinite plane. The results are of interest in ultrasonic nondestructive testing.
We demonstrate the global existence of weak solutions to a class of semilinear strongly damped wave equations possessing nonlinear hyperbolic dynamic boundary conditions. The associated linear operator is $(-\unicode[STIX]{x1D6E5}_{W})^{\unicode[STIX]{x1D703}}\unicode[STIX]{x2202}_{t}u$, where $\unicode[STIX]{x1D703}\in [\frac{1}{2},1)$ and $\unicode[STIX]{x1D6E5}_{W}$ is the Wentzell–Laplacian. A balance condition is assumed to hold between the nonlinearity defined on the interior of the domain and the nonlinearity on the boundary. This allows for arbitrary (supercritical) polynomial growth of each potential, as well as mixed dissipative/antidissipative behaviour.
We consider the finite-time blow-up of solutions for the following two kinds of nonlinear wave equation in de Sitter spacetime:
This proof is based on a new blow-up criterion, which generalizes that by Sideris. Furthermore, we give the lifespan estimate of solutions for the problems.
We have proposed a three-species hybrid food chain model with multiple time delays. The interaction between the prey and the middle predator follows Holling type (HT) II functional response, while the interaction between the top predator and its only food, the middle predator, is taken as a general functional response with the mutual interference schemes, such as Crowley–Martin (CM), Beddington–DeAngelis (BD) and Hassell–Varley (HV) functional responses. We analyse the model system which employs HT II and CM functional responses, and discuss the local and global stability analyses of the coexisting equilibrium solution. The effect of gestation delay on both the middle and top predator has been studied. The dynamics of model systems are affected by both factors: gestation delay and the form of functional responses considered. The theoretical results are supported by appropriate numerical simulations, and bifurcation diagrams are obtained for biologically feasible parameter values. It is interesting from the application point of view to show how an individual delay changes the dynamics of the model system depending on the form of functional response.
We analyse a nonlinear hierarchical size-structured population model with time-dependent individual vital rates. The existence and uniqueness of nonnegative solutions to the model are shown via a comparison principle. Our investigation extends some results in the literature.
We propose an implicit finite-difference method to study the time evolution of the director field of a nematic liquid crystal under the influence of an electric field with weak anchoring at the boundary. The scheme allows us to study the dynamics of transitions between different director equilibrium states under varying electric field and anchoring strength. In particular, we are able to simulate the transition to excited states of odd parity, which have previously been observed in experiments, but so far only analyzed in the static case.
In this paper, He's homotopy perturbation method is utilized to obtain the analytical solution for the nonlinear natural frequency of functionally graded nanobeam. The functionally graded nanobeam is modeled using the Eringen's nonlocal elasticity theory based on Euler-Bernoulli beam theory with von Karman nonlinearity relation. The boundary conditions of problem are considered with both sides simply supported and simply supported-clamped. The Galerkin's method is utilized to decrease the nonlinear partial differential equation to a nonlinear second-order ordinary differential equation. Based on numerical results, homotopy perturbation method convergence is illustrated. According to obtained results, it is seen that the second term of the homotopy perturbation method gives extremely precise solution.
Chladni figures are formed when particles scattered across a plate move due to an external harmonic force resonating with one of the natural frequencies of the plate. Chladni figures are precisely the nodal set of the vibrational mode corresponding to the frequency resonating with the external force. We propose a plausible model for the movement of the particles that explains the formation of Chladni figures in terms of the stochastic stability of the equilibrium solutions of stochastic differential equations.
A synthesis is presented of two recent studies on modelling the nonlinear neuro-mechanical hearing processes in mosquitoes and in mammals. In each case, a hierarchy of models is considered in attempts to understand data that shows nonlinear amplification and compression of incoming sound signals. The insect’s hearing is tuned to the vicinity of a single input frequency. Nonlinear response occurs via an arrangement of many dual capacity neuro-mechanical units called scolopidia within the Johnston’s organ. It is shown how the observed data can be captured by a simple nonlinear oscillator model that is derived from homogenization of a more complex model involving a radial array of scolopidia. The physiology of the mammalian cochlea is much more complex, with hearing occurring via a travelling wave along a tapered, compartmentalized tube. Waves travel a frequency-dependent distance along the tube, at which point they are amplified and “heard”. Local models are reviewed for the pickup mechanism, within the outer hair cells of the organ of Corti. The current debate in the literature is elucidated, on the relative importance of two possible nonlinear mechanisms: active hair bundles and somatic motility. It is argued that the best experimental agreement can be found when the nonlinear terms include longitudinal coupling, the physiological basis of which is described. A discussion section summarizes the lessons learnt from both studies and attempts to shed light on the more general question of what constitutes a good mathematical model of a complex physiological process.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.