Skip to main content Accesibility Help



We demonstrate the global existence of weak solutions to a class of semilinear strongly damped wave equations possessing nonlinear hyperbolic dynamic boundary conditions. The associated linear operator is $(-\unicode[STIX]{x1D6E5}_{W})^{\unicode[STIX]{x1D703}}\unicode[STIX]{x2202}_{t}u$ , where $\unicode[STIX]{x1D703}\in [\frac{1}{2},1)$ and $\unicode[STIX]{x1D6E5}_{W}$ is the Wentzell–Laplacian. A balance condition is assumed to hold between the nonlinearity defined on the interior of the domain and the nonlinearity on the boundary. This allows for arbitrary (supercritical) polynomial growth of each potential, as well as mixed dissipative/antidissipative behaviour.

Hide All
[1] Arendt, W., Metafune, G., Pallara, D. and Romanelli, S., ‘The Laplacian with Wentzell–Robin boundary conditions on spaces of continuous functions’, Semigroup Forum 67(2) (2003), 247261.
[2] Ball, J. M., ‘Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equations’, Nonlinear Sci. 7(5) (1997), 475502; corrected version in Mechanics: From Theory to Computation (Springer, New York, 2000), 447–474.
[3] Ball, J. M., ‘Global attractors for damped semilinear wave equations’, Discrete Contin. Dyn. Syst. 10(2) (2004), 3152.
[4] Carvalho, A. N. and Cholewa, J. W., ‘Local well posedness for strongly damped wave equations with critical nonlinearities’, Bull. Austral. Math. Soc. 66(3) (2002), 443463.
[5] Cavaterra, C., Gal, C. G., Grasselli, M. and Miranville, A., ‘Phase-field systems with nonlinear coupling and dynamic boundary conditions’, Nonlinear Anal. 72(5) (2010), 23752399.
[6] Chueshov, I. and Lasiecka, I., Von Karman Evolution Equations. Well-posedness and Long-time Dynamics, Springer Monographs in Mathematics (Springer, New York, 2010).
[7] Coclite, G. M., Favini, A., Gal, C. G., Goldstein, G. R., Goldstein, J. A., Obrecht, E. and Romanelli, S., ‘The role of Wentzell boundary conditions in linear and nonlinear analysis’, in: Advances in Nonlinear Analysis: Theory, Methods and Applications, 3 (ed. Sivasundaran, S.) (Cambridge Scientific Publishers Ltd, Cambridge, 2009), 279292.
[8] D’Ovidio, M. and Garra, R., ‘Multidimensional fractional advection-dispersion equations and related stochastic processes’, Electron. J. Probab. 19 (2014), Article ID 61, 31 pages.
[9] Gal, C. G., ‘On a class of degenerate parabolic equations with dynamic boundary conditions’, J. Differ. Equ. 253 (2012), 126166.
[10] Gal, C. G., ‘Sharp estimates for the global attractor of scalar reaction-diffusion equations with a Wentzell boundary condition’, J. Nonlinear Sci. 22(1) (2012), 85106.
[11] Gal, C. G. and Grasselli, M., ‘The non-isothermal Allen–Cahn equation with dynamic boundary conditions’, Discrete Contin. Dyn. Syst. 22(4) (2008), 10091040.
[12] Gal, C. G. and Shomberg, J. L., ‘Coleman–Gurtin type equations with dynamic boundary conditions’, Phys. D 292/293 (2015), 2945.
[13] Gal, C. G. and Warma, M., ‘Well posedness and the global attractor of some quasi-linear parabolic equations with nonlinear dynamic boundary conditions’, Differential Integral Equations 23(3–4) (2010), 327358.
[14] Graber, P. J. and Shomberg, J. L., ‘Attractors for strongly damped wave equations with nonlinear hyperbolic dynamic boundary conditions’, Nonlinearity 29(4) (2016), 11711212.
[15] Hale, J. K., Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25 (American Mathematical Society, Providence, RI, 1988).
[16] Haraux, A. and Ôtani, M., ‘Analyticity and regularity for a class of second order evolution equations’, Evol. Equ. Control Theory 2(1) (2013), 101117.
[17] Lions, J. L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires (Dunod, Paris, 1969).
[18] Milani, A. J. and Koksch, N. J., An Introduction to Semiflows, Monographs and Surveys in Pure and Applied Mathematics, 134 (Chapman & Hall/CRC, Boca Raton, 2005).
[19] Renardy, M. and Rogers, R. C., An Introduction to Partial Differential Equations, 2nd edn, Texts in Applied Mathematics, 13 (Springer, New York, 2004).
[20] Rodríguez-Bernal, A. and Tajdine, A., ‘Nonlinear balance for reaction-diffusion equations under nonlinear boundary conditions: dissipativity and blow-up’, J. Differential Equations 169 (2001), 332372.
[21] Tanabe, H., Equations of Evolution (Pitman, London, 1979).
[22] Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68 (Springer, New York, 1988).
[23] Zheng, S., Nonlinear Evolution Equations, Monographs and Surveys in Pure and Applied Mathematics, 133 (Chapman & Hall/CRC, Boca Raton, 2004).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed