We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the behaviour of the norm of the resolvent for non-self-adjoint operators of the form $A := -\partial_x + W(x)$, with $W(x) \ge 0$, defined in ${L^2}({\mathbb{R}})$. We provide a sharp estimate for the norm of its resolvent operator, $\| (A - \lambda)^{-1} \|$, as the spectral parameter diverges $(\lambda \to +\infty)$. Furthermore, we describe the C0-semigroup generated by −A and determine its norm. Finally, we discuss the applications of the results to the asymptotic description of pseudospectra of Schrödinger and damped wave operators, and also the optimality of abstract resolvent bounds based on Carleman-type estimates.
This paper analyzes the initial value problem for the Toda lattice with almost periodic initial data: let $J(t; J_{0})$ denote the family of Jacobi matrices which are solutions of the Toda flow equation with initial condition $J(0; J_{0})=J_{0},$ then, the given almost periodic datum $J_{0}$ is a discrete linear Schrödinger operator with almost periodic potential, which plays a fundamental role in our considerations. We show that, under some given hypotheses, the spectrum of the Schrödinger operator is pure absolute continuous and homogeneous (measure-theoretically) by establishing exponential asymptotics on the size of spectral gaps. These two conclusions enable us to show the boundedness and almost periodicity in the time of solutions for Toda lattice equation with almost periodic initial data. As a consequence, our result presents a positive answer to the discrete Deift’s conjecture [Some open problems in random matrix theory and the theory of integrable systems. Integrable Systems and Random Matrices (Contemporary Mathematics, 458). American Mathematical Society, Providence, RI, 2008, pp. 419–430; Some open problems in random matrix theory and the theory of integrable systems. II. SIGMA Symmetry Integrability Geom. Methods Appl.13 (2017), Paper no. 016].
We obtain a system of identities relating boundary coefficients and spectral data for the one-dimensional Schrödinger equation with boundary conditions containing rational Herglotz–Nevanlinna functions of the eigenvalue parameter. These identities can be thought of as a kind of mini version of the Gelfand–Levitan integral equation for boundary coefficients only.
The present paper is concerned with the infimum of the norm of potentials for Sturm–Liouville eigenvalue problems with Dirichlet boundary condition such that the first two eigenvalues are known. The explicit quantity of the infimum is given by the two eigenvalues.
The present paper deals with the non-real eigenvalues for singular indefinite Sturm–Liouville problems. The lower bounds on non-real eigenvalues for this singular problem associated with a special separated boundary condition are obtained.
We prove Lp norm convergence for (appropriate truncations of) the Fourier series arising from the Dirichlet Laplacian eigenfunctions on three types of triangular domains in $\mathbb{R}^2$: (i) the 45-90-45 triangle, (ii) the equilateral triangle and (iii) the hemiequilateral triangle (i.e. half an equilateral triangle cut along its height). The limitations of our argument to these three types are discussed in light of Lamé’s Theorem and the image method.
We show that all self-adjoint extensions of semibounded Sturm–Liouville operators with limit-circle endpoint(s) can be obtained via an additive singular form-bounded self-adjoint perturbation of rank equal to the deficiency indices, say $d\in \{1,2\}$. This characterization generalizes the well-known analog for semibounded Sturm–Liouville operators with regular endpoints. Explicitly, every self-adjoint extension of the minimal operator can be written as
where $\boldsymbol {A}_0$ is a distinguished self-adjoint extension and $\Theta $ is a self-adjoint linear relation in $\mathbb {C}^d$. The perturbation is singular in the sense that it does not belong to the underlying Hilbert space but is form-bounded with respect to $\boldsymbol {A}_0$, i.e., it belongs to $\mathcal {H}_{-1}(\boldsymbol {A}_0)$, with possible “infinite coupling.” A boundary triple and compatible boundary pair for the symmetric operator are constructed to ensure that the perturbation is well defined and self-adjoint extensions are in a one-to-one correspondence with self-adjoint relations $\Theta $.
The merging of boundary triples with perturbation theory provides a more holistic view of the operator’s matrix-valued spectral measures: identifying not just the location of the spectrum, but also certain directional information.
As an example, self-adjoint extensions of the classical Jacobi differential equation (which has two limit-circle endpoints) are obtained, and their spectra are analyzed with tools both from the theory of boundary triples and perturbation theory.
In this paper, we consider non-self-adjoint Dirac operators on a finite interval with complex-valued potentials and quasi-periodic boundary conditions. Necessary and sufficient conditions for a set of complex numbers to be the spectrum of the indicated problem are established.
In this paper, we characterize jump phenomena of the $n$-th eigenvalue of self-adjoint discrete Sturm–Liouville problems in any dimension. For a fixed Sturm–Liouville equation, we completely characterize jump phenomena of the $n$-th eigenvalue. For a fixed boundary condition, unlike in the continuous case, the $n$-th eigenvalue exhibits jump phenomena and we describe the singularity under a non-degenerate assumption. Compared with the continuous case in Hu et al. (2019, J. Differ. Equ.266, 4106–4136) and Kong et al. (1999, J. Differ. Equ.156, 328–354), the jump set here is involved with coefficients of the Sturm–Liouville equations. This, along with arbitrariness of the dimension, causes difficulty when dividing the jump areas. We study the singularity by partitioning and analysing the local coordinate systems, and provide a Hermitian matrix which can determine the areas’ division. To prove the asymptotic behaviour of the $n$-th eigenvalue, we generalize the method developed in Zhu and Shi (2016, J. Differ. Equ.260, 5987–6016) to any dimension. As an application, by transforming the continuous Sturm–Liouville problem of Atkinson type to a discrete one, we determine the number of eigenvalues and obtain complete characterization of jump phenomena of the $n$-th eigenvalue for the Atkinson type.
In this paper, we consider an eigenvalue problem for ordinary differential equations of fourth order with a spectral parameter in the boundary conditions. The location of eigenvalues on real axis, the structure of root subspaces and the oscillation properties of eigenfunctions of this problem are investigated, and asymptotic formulas for the eigenvalues and eigenfunctions are found. Next, by the use of these properties, we establish sufficient conditions for subsystems of root functions of the considered problem to form a basis in the space $L_p,1 < p < \infty$.
We develop a continuous-time Markov chain (CTMC) approximation of one-dimensional diffusions with sticky boundary or interior points. Approximate solutions to the action of the Feynman–Kac operator associated with a sticky diffusion and first passage probabilities are obtained using matrix exponentials. We show how to compute matrix exponentials efficiently and prove that a carefully designed scheme achieves second-order convergence. We also propose a scheme based on CTMC approximation for the simulation of sticky diffusions, for which the Euler scheme may completely fail. The efficiency of our method and its advantages over alternative approaches are illustrated in the context of bond pricing in a sticky short-rate model for a low-interest environment and option pricing under a geometric Brownian motion price model with a sticky interior point.
We study a class of delta-like perturbations of the Laplacian on the half-line, characterized by Robin boundary conditions at the origin. Using the formalism of nonstandard analysis, we derive a simple connection with a suitable family of Schrödinger operators with potentials of very large (infinite) magnitude and very short (infinitesimal) range. As a consequence, we also derive a similar result for point interactions in the Euclidean space $\mathbb {R}^3$, in the case of radial potentials. Moreover, we discuss explicitly our results in the case of potentials that are linear in a neighborhood of the origin.
For Laplacians defined by measures on a bounded domain in ℝn, we prove analogues of the classical eigenvalue estimates for the standard Laplacian: lower bound of sums of eigenvalues by Li and Yau, and gaps of consecutive eigenvalues by Payne, Pólya and Weinberger. This work is motivated by the study of spectral gaps for Laplacians on fractals.
We obtain generalizations of the classical Menchov–Rademacher theorem to the case of continuous orthogonal systems. These results are applied to show the existence of Moller wave operators in Schrödinger evolution.
The present paper deals with non-real eigenvalues of singular indefinite Sturm–Liouville problems with limit-circle type endpoints. A priori bounds and the existence of non-real eigenvalues of the problem associated with a special separated boundary condition are obtained.
We look for best partitions of the unit interval that minimize certain functionals defined in terms of the eigenvalues of Sturm–Liouville problems. Via Γ-convergence theory, we study the asymptotic distribution of the minimizers as the number of intervals of the partition tends to infinity. Then we discuss several examples that fit in our framework, such as the sum of (positive and negative) powers of the eigenvalues and an approximation of the trace of the heat Sturm–Liouville operator.
In this article, the existence of heteroclinic solution of a class of generalized Hamiltonian system with potential $V : {\open R}^{n} \longmapsto {\open R}$ having a finite or infinite number of global minima is studied. Examples include systems involving the p-Laplacian operator, the curvature operator and the relativistic operator. Generalized conservation of energy is established, which leads to the property of equipartition of energy enjoyed by heteroclinic solutions. The existence problem of heteroclinic solution is studied using both variational method and the metric method. The variational approach is classical, while the metric method represents a more geometrical point of view where the existence problem of heteroclinic solution is reduced to that of geodesic in a proper length metric space. Regularities of the heteroclinic solutions are discussed. The results here not only provide alternative solution methods for Φ-Laplacian systems, but also improve existing results for the classical Hamiltonian system. In particular, the conditions imposed upon the potential are very mild and new proof for the compactness is given. Finally in ℝ2, heteroclinic solutions are explicitly written down in closed form by using complex function theory.
This paper is concerned with a class of non-symmetric operators, that is, 𝒥-symmetric operators, in Hilbert spaces. A sufficient condition for λ ∈ C being an element of the essential spectrum of a 𝒥-symmetric operator is given in terms of the number of linearly independent solutions of a certain homogeneous equation, and a characterization for points of the essential spectrum plus the set of all eigenvalues of a 𝒥-symmetric operator is obtained in terms of the numbers of linearly independent solutions of certain inhomogeneous equations. As direct applications, the corresponding results are obtained for singular 𝒥-symmetric Hamiltonian systems and their special forms of singular Sturm-Liouville equations with complex-valued coefficients, which enable us to study the spectra of singular 𝒥-symmetric differential expressions using numerous tools available in the fundamental theory of differential equations.
We give an upper estimate for the order of the entire functions in the Nevanlinna parameterization of the solutions of an indeterminate Hamburger moment problem. Under a regularity condition this estimate becomes explicit and takes the form of a convergence exponent. Proofs are based on transformations of canonical systems and I.S.Kac' formula for the spectral asymptotics of a string. Combining with a lower estimate from previous work, we obtain a class of moment problems for which order can be computed. This generalizes a theorem of Yu.M.Berezanskii about spectral asymptotics of a Jacobi matrix (in the case that order is ⩽ 1/2).
We obtain the representation of the backward shift operator on Chebyshev polynomials involving a principal value (PV) integral. Twice the backward shift on the space of square-summable sequences l2 displays chaotic dynamics, thus we provide an explicit form of a chaotic operator on L2 (−1, 1, (1−x2)–1/2) using Cauchy’s PV integral. We explicitly calculate the periodic points of the operator and provide examples of unbounded trajectories, as well as chaotic ones. Histograms and recurrence plots of shifts of random Chebyshev expansions display interesting behaviour over fractal measures.