We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The topological structure of ‘mean dichotomy spectrum’ is shown in this article, as an extension of Sacker–Sell spectrum and non-uniform dichotomy spectrum. With regard to mean hyperbolic systems, the coexistence of expansion and contraction behaviours can lead to non-hyperbolic phenomena during evolution process. To be precise, distinct from uniform and non-uniform hyperbolic cases, error hyperbolic degree $\varepsilon(t,\tau)$ is vital to depict the spectral manifolds. As application, the reducibility theorem for mean hyperbolic systems is provided to deduce block diagonalization.
The fixed points of the generalized Ricci flow are the Bismut Ricci flat (BRF) metrics, i.e., a generalized metric (g, H) on a manifold M, where g is a Riemannian metric and H a closed 3-form, such that H is g-harmonic and $\operatorname{Rc}(g)=\tfrac{1}{4} H_g^2$. Given two standard Einstein homogeneous spaces $G_i/K$, where each Gi is a compact simple Lie group and K is a closed subgroup of them holding some extra assumption, we consider $M=G_1\times G_2/\Delta K$. Recently, Lauret and Will proved the existence of a BRF metric on any of these spaces. We proved that this metric is always asymptotically stable for the generalized Ricci flow on M among a subset of G-invariant metrics and, if $G_1=G_2$, then it is globally stable.
In this paper, we present a sufficient framework to exhibit the sample path-wise asymptotic flocking dynamics of the Cucker–Smale model with unit-speed constraint and the randomly switching network topology. We employ a matrix formulation of the given equation, which allows us to evaluate the diameter of velocities with respect to the adjacency matrix of the network. Unlike the previous result on the randomly switching Cucker–Smale model, the unit-speed constraint disallows the system to be considered as a nonautonomous linear ordinary differential equation on velocity vector, which forces us to get a weaker form of the flocking estimate than the result for the original Cucker–Smale model.
Choosing ${\kappa }$ (horizontal ordinate of the saddle point associated to the homoclinic orbit) as bifurcation parameter, bifurcations of the travelling wave solutions is studied in a perturbed $(1 + 1)$-dimensional dispersive long wave equation. The solitary wave solution exists at a suitable wave speed $c$ for the bifurcation parameter ${\kappa }\in \left (0,1-\frac {\sqrt 3}{3}\right )\cup \left (1+\frac {\sqrt 3}{3},2\right )$, while the kink and anti-kink wave solutions exist at a unique wave speed $c^*=\sqrt {15}/3$ for $\kappa =0$ or $\kappa =2$. The methods are based on the geometric singular perturbation (GSP, for short) approach, Melnikov method and invariant manifolds theory. Interestingly, not only the explicit analytical expression of the complicated homoclinic Melnikov integral is directly obtained for the perturbed long wave equation, but also the explicit analytical expression of the limit wave speed is directly given. Numerical simulations are utilized to verify our mathematical results.
Existence of specific eternal solutions in exponential self-similar form to the following quasilinear diffusion equation with strong absorption
\[ \partial_t u=\Delta u^m-|x|^{\sigma}u^q, \]
posed for $(t,\,x)\in (0,\,\infty )\times \mathbb {R}^N$, with $m>1$, $q\in (0,\,1)$ and $\sigma =\sigma _c:=2(1-q)/ (m-1)$ is proved. Looking for radially symmetric solutions of the form
we show that there exists a unique exponent $\beta ^*\in (0,\,\infty )$ for which there exists a one-parameter family $(u_A)_{A>0}$ of solutions with compactly supported and non-increasing profiles $(f_A)_{A>0}$ satisfying $f_A(0)=A$ and $f_A'(0)=0$. An important feature of these solutions is that they are bounded and do not vanish in finite time, a phenomenon which is known to take place for all non-negative bounded solutions when $\sigma \in (0,\,\sigma _c)$.
Stability is among the most important concepts in dynamical systems. Local stability is well-studied, whereas determining the ‘global stability’ of a nonlinear system is very challenging. Over the last few decades, many different ideas have been developed to address this issue, primarily driven by concrete applications. In particular, several disciplines suggested a web of concepts under the headline ‘resilience’. Unfortunately, there are many different variants and explanations of resilience, and often, the definitions are left relatively vague, sometimes even deliberately. Yet, to allow for a structural development of a mathematical theory of resilience that can be used across different areas, one has to ensure precise starting definitions and provide a mathematical comparison of different resilience measures. In this work, we provide a systematic review of the most relevant indicators of resilience in the context of continuous dynamical systems, grouped according to their mathematical features. The indicators are also generalised to be applicable to any attractor. These steps are important to ensure a more reliable, quantitatively comparable and reproducible study of resilience in dynamical systems. Furthermore, we also develop a new concept of resilience against certain nonautonomous perturbations to demonstrate how one can naturally extend our framework. All the indicators are finally compared via the analysis of a classic scalar model from population dynamics to show that direct quantitative application-based comparisons are an immediate consequence of a detailed mathematical analysis.
For linear stochastic differential equations with bounded coefficients, we establish the robustness of nonuniform mean-square exponential dichotomy (NMS-ED) on $[t_{0},\,+\infty )$, $(-\infty,\,t_{0}]$ and the whole ${\Bbb R}$ separately, in the sense that such an NMS-ED persists under a sufficiently small linear perturbation. The result for the nonuniform mean-square exponential contraction is also discussed. Moreover, in the process of proving the existence of NMS-ED, we use the observation that the projections of the ‘exponential growing solutions’ and the ‘exponential decaying solutions’ on $[t_{0},\,+\infty )$, $(-\infty,\,t_{0}]$ and ${\Bbb R}$ are different but related. Thus, the relations of three types of projections on $[t_{0},\,+\infty )$, $(-\infty,\,t_{0}]$ and ${\Bbb R}$ are discussed.
For linear differential systems, the Sacker–Sell spectrum (dichotomy spectrum) and the contractible set are the same. However, we claim that this is not true for the linear difference equations. A counterexample is given. For the convenience of research, we study the relations between the dichotomy spectrum and the contractible set under the framework on time scales. In fact, by a counterexample, we show that the contractible set could be different from dichotomy spectrum on time scales established by Siegmund [J. Comput. Appl. Math., 2002]. Furthermore, we find that there is no bijection between them. In particular, for the linear difference equations, the contractible set is not equal to the dichotomy spectrum. To counter this mismatch, we propose a new notion called generalized contractible set and we prove that the generalized contractible set is exactly the dichotomy spectrum. Our approach is based on roughness theory and Perron's transformation. In this paper, a new method for roughness theory on time scales is provided. Moreover, we provide a time-scaled version of the Perron's transformation. However, the standard argument is invalid for Perron's transformation. Thus, some novel techniques should be employed to deal with this problem. Finally, an example is given to verify the theoretical results.
Vertically vibrating a liquid bath may allow a self-propelled wave-particle entity to move on its free surface. The horizontal dynamics of this walking droplet, under the constraint of an external drag force, can be described adequately by an integro-differential trajectory equation. For a sinusoidal wave field, this equation is equivalent to a closed three-dimensional system of nonlinear ODEs. We explicitly define a stability boundary for the system and a quantised criterion for its partial integrability in the meromorphic category.
In this paper, we are interested in investigating notions of stability for generalized linear differential equations (GLDEs). Initially, we propose and revisit several definitions of stability and provide a complete characterization of them in terms of upper bounds and asymptotic behaviour of the transition matrix. In addition, we illustrate our stability results for GLDEs to linear periodic systems and linear impulsive differential equations. Finally, we prove that the well-known definitions of uniform asymptotic stability and variational asymptotic stability are equivalent to the global uniform exponential stability introduced in this article.
We present sufficient conditions under which a given linear nonautonomous system and its nonlinear perturbation are topologically conjugated. Our conditions are of a very general form and provided that the nonlinear perturbations are well-behaved, we do not assume any asymptotic behaviour of the linear system. Moreover, the control on the nonlinear perturbations may differ along finitely many mutually complementary directions. We consider both the cases of one-sided discrete and continuous dynamics.
In this paper we introduce new birth-and-death processes with partial catastrophe and study some of their properties. In particular, we obtain some estimates for the mean catastrophe time, and the first and second moments of the distribution of the process at a fixed time t. This is completed by some asymptotic results.
We show that all self-adjoint extensions of semibounded Sturm–Liouville operators with limit-circle endpoint(s) can be obtained via an additive singular form-bounded self-adjoint perturbation of rank equal to the deficiency indices, say $d\in \{1,2\}$. This characterization generalizes the well-known analog for semibounded Sturm–Liouville operators with regular endpoints. Explicitly, every self-adjoint extension of the minimal operator can be written as
where $\boldsymbol {A}_0$ is a distinguished self-adjoint extension and $\Theta $ is a self-adjoint linear relation in $\mathbb {C}^d$. The perturbation is singular in the sense that it does not belong to the underlying Hilbert space but is form-bounded with respect to $\boldsymbol {A}_0$, i.e., it belongs to $\mathcal {H}_{-1}(\boldsymbol {A}_0)$, with possible “infinite coupling.” A boundary triple and compatible boundary pair for the symmetric operator are constructed to ensure that the perturbation is well defined and self-adjoint extensions are in a one-to-one correspondence with self-adjoint relations $\Theta $.
The merging of boundary triples with perturbation theory provides a more holistic view of the operator’s matrix-valued spectral measures: identifying not just the location of the spectrum, but also certain directional information.
As an example, self-adjoint extensions of the classical Jacobi differential equation (which has two limit-circle endpoints) are obtained, and their spectra are analyzed with tools both from the theory of boundary triples and perturbation theory.
Let f be a smooth symplectic diffeomorphism of
${\mathbb R}^2$
admitting a (non-split) separatrix associated to a hyperbolic fixed point. We prove that if f is a perturbation of the time-1 map of a symplectic autonomous vector field, this separatrix is accumulated by a positive measure set of invariant circles. However, we provide examples of smooth symplectic diffeomorphisms with a Lyapunov unstable non-split separatrix that are not accumulated by invariant circles.
In this paper, we extend to the non-Hille–Yosida case a variation of constants formula for a nonautonomous and nonhomogeneous Cauchy problems first obtained by Gühring and Räbiger. By using this variation of constants formula, we derive a necessary and sufficient condition for the existence of an exponential dichotomy for the evolution family generated by the associated nonautonomous homogeneous problem. We also prove a persistence result of the exponential dichotomy for small perturbations. Finally, we illustrate our results by considering two examples. The first example is a parabolic equation with nonlocal and nonautonomous boundary conditions, and the second example is an age-structured model that is a hyperbolic equation.
Let $(A_m)_{m \in {\mathop Z}}$ be a sequence of bounded linear maps acting on an arbitrary Banach space X and admitting an exponential trichotomy and let $f_m:X \to X$ be a Lispchitz map for every $m\in {\mathop Z} $. We prove that whenever the Lipschitz constants of $f_m$, $m \in {\mathop Z} $, are uniformly small, the nonautonomous dynamics given by $x_{m+1}=A_mx_m+f_m(x_m)$, $m\in {\mathop Z} $, has various types of shadowing. Moreover, if X is finite dimensional and each $A_m$ is invertible we prove that a converse result is also true. Furthermore, we get similar results for one-sided and continuous time dynamics. As applications of our results, we study the Hyers–Ulam stability for certain difference equations and we obtain a very general version of the Grobman–Hartman's theorem for nonautonomous dynamics.
We propose and analyse an age-structured model for within-host HIV virus dynamics which is incorporated with both virus-to-cell and cell-to-cell infection routes, and proliferations of both uninfected and infected cells in the form of logistic growth. The model turns out to be a hybrid system with two differential-integral equations and one first-order partial differential equation. We perform some rigorous analyses for the considered model. Among the interesting dynamical behaviours of the model is the occurrence of backward bifurcation in terms of the basic reproduction number R0 at R0 = 1, which raises new challenges for effective infection control. We also discuss the cause of such a backward bifurcation, based on our analytical results.
We study the differentiability properties of the topological equivalence between a uniformly asymptotically stable linear nonautonomous system and a perturbed system with suitable nonlinearities. For this purpose, we construct a homeomorphism inspired in the Palmer's one restricted to the positive half line, studying additional continuity properties and providing sufficient conditions ensuring its Cr–smoothness.
is Hyers–Ulam stable if and only if the spectrum of the monodromy matrix Tq: = Aq−1 · · · A0 (i.e. the set of all its eigenvalues) does not intersect the unit circle Γ = {z ∈ ℂ: |z| = 1}, i.e. Tq is hyperbolic. Here (and in as follows) we let
0.2
(where a(t) and b(t) are ℂ-valued continuous and 1-periodic functions defined on ℝ) is Hyers–Ulam stable if and only if P(1) is hyperbolic; here P(t) denotes the solution of the first-order matrix 2-dimensional differential system
0.4