Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T19:16:55.729Z Has data issue: false hasContentIssue false

Smoothness of topological equivalence on the half line for nonautonomous systems

Published online by Cambridge University Press:  07 May 2019

Álvaro Castañeda
Affiliation:
Departamento de Matemáticas, Universidad de Chile, Casilla 653, Santiago, Chile (castaneda@uchile.cl; grobledo@uchile.cl)
Gonzalo Robledo
Affiliation:
Departamento de Matemáticas, Universidad de Chile, Casilla 653, Santiago, Chile (castaneda@uchile.cl; grobledo@uchile.cl)
Pablo Monzón
Affiliation:
Facultad de Ingeniería, Universidad de la República, Código Postal 11300, Montevideo, Uruguay (monzon@fing.edu.uy)

Abstract

We study the differentiability properties of the topological equivalence between a uniformly asymptotically stable linear nonautonomous system and a perturbed system with suitable nonlinearities. For this purpose, we construct a homeomorphism inspired in the Palmer's one restricted to the positive half line, studying additional continuity properties and providing sufficient conditions ensuring its Cr–smoothness.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Castañeda, Á. and Robledo, G.. Differentiability of Palmer's linearization theorem and converse result for density functions. J. Differ. Equ. 259 (2015), 46344650.Google Scholar
2Coddington, E. and Levinson, N.. Theory of ordinary differential equations (New York: Mc Graw–Hill, 1955).Google Scholar
3Coppel, W.. Dichotomies in stability theory. Lecture Notes in Mathematics (Berlin: Springer, 1978).CrossRefGoogle Scholar
4Cuong, L. V., Doan, T. S. and Siegmund, S.. A Sternberg theorem for nonautonomous differential equations. J. Dynam. Differ. Equ. (2018) doi:10.1007/s10884-017-9629-8.Google Scholar
5Grobman, D. M.. Homeomorphism of systems of differential equations. Dokl. Akad. Nauk SSSR 128 (1959), 880881 (Russian).Google Scholar
6Hartman, P.. On local homeomorphisms of Euclidean spaces. Bol. Soc. Mat. Mexicana 5 (1960), 220241.Google Scholar
7Hartman, P.. Ordinary differential equations (Philadelphia: SIAM, 2002).CrossRefGoogle Scholar
8Jiang, L.. Generalized exponential dichotomy and global linearization. J. Math. Anal. Appl. 315 (2006), 474490.Google Scholar
9Kloeden, P. E. and Rasmussen, M.. Nonautonomous dynamical systems (Providence RI: American Mathematical Society, 2011).CrossRefGoogle Scholar
10Palmer, K. J.. A generalization of Hartman's linearization theorem. J. Math. Anal. Appl. 41 (1973), 753758.Google Scholar
11Palmer, K. J.. The structurally stable linear systems on the half-line are those with exponential dichotomies. J. Differ. Equ. 33 (1979), 1625.CrossRefGoogle Scholar
12Plastock, R.. Homeomorphisms between Banach spaces. Trans. Amer. Math. Soc. 200 (1974), 16917183.CrossRefGoogle Scholar
13Pugh, C.. On a theorem of Hartman. Amer. J. Math. 91 (1969), 363367.CrossRefGoogle Scholar
14Radulescu, M. and Radulescu, S.. Global inversion theorems and applications to differential equations. Nonlinear Anal. 4 (1980), 951965.CrossRefGoogle Scholar
15Reinfelds, A. and Steinberga, D.. Dynamical equivalence of quasilinear equations. Int. J. Pure. Appl. Math. 98 (2015), 355364.CrossRefGoogle Scholar
16Shi, J. L. and Xiong, K. Q.. On Hartman's linearization theorem and Palmer's linearization theorem. J. Math. Anal. Appl. 192 (1995), 813832.CrossRefGoogle Scholar
17Xia, Y-H., Wang, R., Kou, K. I. and O'Regan, D.. On the linearization theorem for nonautonomous differential equations. Bull. Sci. Math. 139 (2015), 829846.Google Scholar