We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The dynamic model of the distributed propulsion vehicle faces significant challenges due to several factors. The primary difficulties arise from the strong coupling between multiple power units and aerodynamic rudder surfaces, the interaction between thrust and vehicle dynamics, and the complexity of the aerodynamic model, which includes high-dimensional and high-order variables. To address these challenges, wind tunnel tests are conducted to analyse the aerodynamic characteristics and identify variables affecting the aerodynamic coefficients. Subsequently, a deep neural network is employed to investigate the influence of the power system and aerodynamic rudder on the aerodynamic coefficients. Based on these findings, a multi-dynamic coupled aerodynamic model is developed. Furthermore, a control-oriented nonlinear dynamics model for the distributed propulsion vehicle is established, and a flight controller is designed. Finally, closed-loop simulations for the climb, descent and turn phases are performed, validating the effectiveness of the established model.
Using manually compiled cost of equity (COE) estimates disclosed in takeover regulatory filings, we provide novel evidence on how investment bankers estimate discount rates. COE estimates are related to several risk proxies, such as beta and size. Other firm characteristics are unrelated to COE estimates or provide relations contradicting academic evidence. We also explore the role of incentives. For example, banks use significantly higher COEs in management buyouts, which potentially underestimates target value, making the bid more attractive for target shareholder approval.
We study nonlinear resonant triad interactions among flexural-gravity waves generated by a steadily moving load on a floating ice sheet. Of the many possible triad interactions involving at least one load-produced wave, we focus on the double-frequency case where the wavenumber of the leading wave is double that of the trailing wave. This case stands out because resonant interactions can occur with or without the presence of an ambient wave. Using multiple-scale perturbation analysis, we obtain amplitude evolution equations governing the leading-order, steady-state response. We complement the theoretical predictions with direct numerical simulations of the initial–boundary value problem using a high-order spectral method accurate to arbitrary order. Our results show that the double-frequency interaction can cause the trailing wave amplitude to decay with distance from the load, with its energy transferred to its second harmonic which radiates forwards to coherently interfere with the leading wave. Depending on the length and orientation of the load, the resonant interaction can in some cases cause the wave drag to become vanishingly small, or in other cases nearly double the maximum bending strain compared to the linear prediction. We also consider the effect of a small ambient wave that can initiate a resonant interaction in the leading wave field in addition to the trailing wave field interaction. This can result in a steady, localised wave packet containing two mutually trapped wave components, leading to vanishing wave drag. This work has potential implications for defining safe operating profiles for vehicles travelling on floating ice.
In recent years, the rapid convergence of artificial intelligence (AI) and low-altitude flight technology has driven significant transformations across various industries. These advancements have showcased immense potential in areas such as logistics distribution, urban air mobility (UAM) and national defense. By adopting the AI technology, low-altitude flight technology can achieve high levels of automation and operate in coordinated swarms, thereby enhancing efficiency and precision. However, as these technologies become more pervasive, they also raise pressing ethical or moral concerns, particularly regarding privacy, public safety, as well as the risks of militarisation and weaponisation. These issues have sparked extensive debates. In summary, while the integration of AI and low-altitude flight presents revolutionary opportunities, it also introduces complex ethical challenges. This article will explore these opportunities and challenges in depth, focusing on areas such as privacy protection, public safety, military applications and legal regulation, and will propose strategies to ensure that technological advancements remain aligned with ethical or moral principles.
Research on the cognitive neural mechanisms of language control often overlooks the role of rewards. To investigate how reversal rewards affect bilingual language switching during observational learning, we conducted a dual-brain electroencephalography (EEG) study. Participants, classified as direct learners or observers, performed a voluntary language-switching task under dynamic reward conditions. Our results demonstrated that both direct learners and observers exhibited high correct acquisition rates for the switch and non-switch behaviors in both pre- and post-reversal phases. Notably, direct learners and observers showed reduced switch costs in the post-reversal phase, highlighting enhanced language control efficiency. EEG analyses revealed that direct learners exhibited late positive component (LPC) switch costs in both pre- and post-reversal phases, while observers showed LPC switch costs only in the post-reversal phase. These findings support the Adaptive Control Hypothesis by highlighting the adaptability of language control mechanisms in response to dynamic reward environments during direct and observational learning.
One species-general life history (LH) principle posits that challenging childhood environments are coupled with a fast or faster LH strategy and associated behaviors, while secure and stable childhood environments foster behaviors conducive to a slow or slower LH strategy. This coupling between environments and LH strategies is based on the assumption that individuals’ internal traits and states are independent of their external surroundings. In reality, individuals respond to external environmental conditions in alignment with their intrinsic vitality, encompassing both physical and mental states. The present study investigated attachment as an internal mental state, examining its role in mediating and moderating the association between external environmental adversity and fast LH strategies. A sample of 1169 adolescents (51% girls) from 9 countries was tracked over 10 years, starting from age 8. The results confirm both mediation and moderation and, for moderation, secure attachment nullified and insecure attachment maintained the environment-LH coupling. These findings suggest that attachment could act as an internal regulator, disrupting the contingent coupling between environmental adversity and a faster pace of life, consequently decelerating human LH.
Adolescents with depression have distinct affective reactions to daily events, but current research is controversial. The emotional context insensitivity theory suggests blunted reactivity in depression, whereas the hypotheses of negative potentiation and mood brightening effect suggest otherwise. While nonlinear associations between depression severity and affective reactivity have been observed, studies with a separate subclinical group remain rare. Subthreshold depression (SD), defined by two to four symptoms lasting for two weeks or more, provides a dimensional view to the underpinnings of affective reactivity. In this study, we compared positive affect (PA) and negative affect (NA) reactivity to positive and negative daily events (uplifts and stress) among adolescents with Major Depressive Disorder (MDD), SD and healthy controls (HC) using experience sampling methods (ESM).
Objectives
We hypothesized a stepped difference in affective reactivity along the depression spectrum: the MDD group will have the strongest reactivity of PA and NA to uplifts and stress, followed by SD and HC.
Methods
Three groups (MDD, SD, and HC) of adolescents were recruited from an epidemiologic sample entitled ‘Hong Kong Child and Adolescent Psychiatric Epidemiologic Survey: Age 6 to 17’. Group status was determined by the Diagnostic Interview Schedule for Children Version 5. They completed an experience sampling diary on smartphone for 14 consecutive days, with 5-10 entries per day. Momentary levels of PA (happy, relaxed, contented), NA (irritated, low, nervous), uplifts and stress experienced before the entry were measured on a 1-7 Likert scale.
Results
The sample consisted of 19 adolescents with MDD, 30 with SD, and 59 HC. The M:F ratio was 17:19. The age range was 12-18 with a mean of 14.8. The overall ESM completion rate was 46%. The MDD group had the highest levels of stress and NA, and the lowest levels of uplifts and PA, followed by the SD and HC groups respectively (p<0.01). Across groups, levels of PA were positively associated with uplifts and negatively associated with stress, whereas levels of NA were positively associated with stress and negatively associated with uplifts. The Group x Uplift interaction effect on PA was significant, with greater PA reactivity in SD (p<0.01) and MDD (p=0.07) when compared with HC. The Group x Uplift interaction effect on NA was significant, with greater NA reactivity in SD than HC (p<0.01). The Group x Stress interaction effect on PA was significant, with greater PA reactivity in SD than HC (p<0.01) and MDD (p<0.01). The Group x Stress interaction effect with NA is non-significant.
Conclusions
Contrary to our hypothesis, adolescents with SD experienced strongest PA and NA reactivity in uplifts and PA reactivity in stress. It provides evidence towards a nonlinear relationship between severity of depression and affective reactivity.
The occurrence of depression in adolescence, a critical period of brain development, linked with neuroanatomical and cognitive abnormalities. Neuroimaging studies have identified hippocampal abnormalities in those of adolescent patients. However, few studies have investigated the atypically developmental trends in hippocampal subfields in adolescents with depression and their relationships with cognitive dysfunctions.
Objectives
To explore the structural abnormalities of hippocampal subfields in patients with youth depression and examine how these abnormalities associated with cognitive deficits.
Methods
We included a sample of 79 first-episode depressive patients (17 males, age = 15.54±1.83) and 71 healthy controls (23 males, age = 16.18±2.85). The severity of these adolescent patients was assessed by depression scale, suicidal risk and self-harm behavior. Nine cognitive tasks were used to evaluate memory, cognitive control and attention abilities for all participants. Bilateral hippocampus were segmented into 12 subfields with T1 and T2 weighted images using Freesurfer v6.0. A mixed analysis of variance was performed to assess the differences in subfields volumes between all patients and controls, and between patients with mild and severe depression. Finally, LASSO regression was conducted to explore the associations between hippocampal subfields and cognitive abnormalities in patients.
Results
We found significant subfields atrophy in the CA1, CA2/3, CA4, dentate gyrus, hippocampal fissure, hippocampal tail and molecular layer subfields in patients. For those patients with severe depression, hippocampal subfields showed greater extensive atrophy than those in mild, particularly in CA1-4 subfields extending towards the subiculum. These results were similar across various severity assessments. Regression indicated that hippocampal subfields abnormalities had the strongest associations with memory dysfunction, and relatively week associations with cognitive control and attention. Notably, CA4 and dentate gyrus had the highest weights in the regression model.
Conclusions
As depressive severity increases, hippocampal subfield atrophy tends to spread from CA regions to surrounding areas, and primarily affects memory function in patients with youth depression. These results suggest hippocampus might be markers in progression of adolescent depression, offering new directions for early clinical intervention.
Both impulsivity and compulsivity have been identified as risk factors for problematic use of the internet (PUI). Yet little is known about the relationship between impulsivity, compulsivity and individual PUI symptoms, limiting a more precise understanding of mechanisms underlying PUI.
Aims
The current study is the first to use network analysis to (a) examine the unique association among impulsivity, compulsivity and PUI symptoms, and (b) identify the most influential drivers in relation to the PUI symptom community.
Method
We estimated a Gaussian graphical model consisting of five facets of impulsivity, compulsivity and individual PUI symptoms among 370 Australian adults (51.1% female, mean age = 29.8, s.d. = 11.1). Network structure and bridge expected influence were examined to elucidate differential associations among impulsivity, compulsivity and PUI symptoms, as well as identify influential nodes bridging impulsivity, compulsivity and PUI symptoms.
Results
Results revealed that four facets of impulsivity (i.e. negative urgency, positive urgency, lack of premeditation and lack of perseverance) and compulsivity were related to different PUI symptoms. Further, compulsivity and negative urgency were the most influential nodes in relation to the PUI symptom community due to their highest bridge expected influence.
Conclusions
The current findings delineate distinct relationships across impulsivity, compulsivity and PUI, which offer insights into potential mechanistic pathways and targets for future interventions in this space. To realise this potential, future studies are needed to replicate the identified network structure in different populations and determine the directionality of the relationships among impulsivity, compulsivity and PUI symptoms.
Plant growth requires the integration of internal and external cues, perceived and transduced into a developmental programme of cell division, elongation and wall thickening. Mechanical forces contribute to this regulation, and thigmomorphogenesis typically includes reducing stem height, increasing stem diameter, and a canonical transcriptomic response. We present data on a bZIP transcription factor involved in this process in grasses. Brachypodium distachyon SECONDARY WALL INTERACTING bZIP (SWIZ) protein translocated into the nucleus following mechanostimulation. Classical touch-responsive genes were upregulated in B. distachyon roots following touch, including significant induction of the glycoside hydrolase 17 family, which may be unique to grass thigmomorphogenesis. SWIZ protein binding to an E-box variant in exons and introns was associated with immediate activation followed by repression of gene expression. SWIZ overexpression resulted in plants with reduced stem and root elongation. These data further define plant touch-responsive transcriptomics and physiology, offering insights into grass mechanotranduction dynamics.
Prosody refers to stress and intonation patterns in a language. Previous studies have found that prosodic sensitivity (PS) and executive functions can affect reading comprehension in first (L1) and second languages (L2). The current study examined these factors among a group of L1 Mandarin speakers learning L2 English who participated in a series of tasks measuring phonological awareness, Mandarin tone sensitivity, English PS, along with three specific executive functions – namely, cognitive flexibility, inhibitory control, and working memory. The results demonstrated that Mandarin tone sensitivity and cognitive flexibility mediated English PS and reading. A simple slope analysis showed that PS positively predicted word reading for readers with higher but not lower cognitive flexibility. These results imply that PS in L2 reading is affected by both prosodic transfer of L1 tone sensitivity and cognitive flexibility.
The adsorption of the herbicide dimepiperate S-(α;α-dimethylbenzyl)-1-piperidinecarbothioate on homoionic Fe3+-, Al3+-, Ca2+-, and Na+-montmorillonite was studied in aqueous medium. The adsorption is described well by the Freundlich equation. The adsorption capacity decreases in the order Fe3+ > Al3+ > Ca2+ > Na+ clay. The dimepiperate adsorption from chloroform solution was also investigated by analytical, spectroscopic, and X-ray powder diffraction techniques. IR results suggest that the adsorption involves the interaction of the thioester carbonyl group of dimepiperate possibly with the surrounding water of metal ions. On Al3+ and Fe3+ clays, this interaction leads to hydrolysis of the thioester bond and formation of the thiol and carbamic acid derivatives that yield α-methylstyrene and piperidine, respectively.
We study nonlinear resonant wave–wave interactions which occur when ocean waves propagate into a thin floating ice sheet. Using multiple-scale perturbation analysis, we obtain theoretical predictions of the wave amplitude evolution as a function of distance travelled past the ice edge for a semi-infinite ice sheet. The theoretical predictions are supported by a high-order spectral (HOS) method capable of simulating nonlinear interactions in both open water and the ice sheet. Using the HOS method, the amplitude evolution predictions are extended to multiple (coupled) triad interactions and a single ice sheet of finite length. We relate the amplitude evolution to mechanisms with strong frequency dependence – ice bending strain, related to ice breakup, as well as wave reflection and transmission. We show that, due to sum-frequency interactions, the maximum strain in the ice sheet can be more than twice that predicted by linearised theory. For an ice sheet of finite length, we show that nonlinear wave reflection and transmission coefficients depend on a parameter in terms of wave steepness and ice length, and can have values significantly different than those from linear theory. In particular, we show that nonlinear sum-frequency interactions can appreciably decrease the total wave energy transmitted past the ice sheet. This work has implications for understanding the occurrence of ice breakup, wave attenuation due to scattering in the marginal ice zone and the resulting ice floe size distribution.
Echinococcosis poses a significant threat to public health. The Chinese government has implemented prevention and control measures to mitigate the impact of the disease. By analyzing data from the Chinese Center for Disease Control and Prevention and the State Council of the People’s Republic of China, we found that implementation of these measures has reduced the infection rate by nearly 50% between 2004 to 2022 (from 0.3975 to 0.1944 per 100,000 person-years). Nonetheless, some regions still bear a significant disease burden, and lack of detailed information limites further evaluation of the effects on both alveolar and cystic echinococcosis. Our analysis supports the continuing implementation of these measures and suggests that enhanced wildlife management, case-based strategies, and surveillance systems will facilitate disease control.
It is unclear how much adolescents’ lives were disrupted throughout the COVID-19 pandemic or what risk factors predicted such disruption. To answer these questions, 1,080 adolescents in 9 nations were surveyed 5 times from March 2020 to July 2022. Rates of adolescent COVID-19 life disruption were stable and high. Adolescents who, compared to their peers, lived in nations with higher national COVID-19 death rates, lived in nations with less stringent COVID-19 mitigation strategies, had less confidence in their government’s response to COVID-19, complied at higher rates with COVID-19 control measures, experienced the death of someone they knew due to COVID-19, or experienced more internalizing, externalizing, and smoking problems reported more life disruption due to COVID-19 during part or all of the pandemic. Additionally, when, compared to their typical levels of functioning, adolescents experienced spikes in national death rates, experienced less stringent COVID-19 mitigation measures, experienced less confidence in government response to the COVID-19 pandemic, complied at higher rates with COVID-19 control measures, experienced more internalizing problems, or smoked more at various periods during the pandemic, they also experienced more COVID-19 life disruption. Collectively, these findings provide new insights that policymakers can use to prevent the disruption of adolescents’ lives in future pandemics.
Our earth is immersed in the near-earth space plasma environment, which plays a vital role in protecting our planet against the solar-wind impact and influencing space activities. It is significant to investigate the physical processes dominating the environment, for deepening our scientific understanding of it and improving the ability to forecast the space weather. As a crucial part of the National Major Scientific and Technological Infrastructure–Space Environment Simulation Research Infrastructure (SESRI) in Harbin, the Space Plasma Environment Research Facility (SPERF) builds a system to replicate the near-earth space plasma environment in the laboratory. The system aims to simulate the three-dimensional (3-D) structure and processes of the terrestrial magnetosphere for the first time in the world, providing a unique platform to reveal the physics of the 3-D asymmetric magnetic reconnection relevant to the earth's magnetopause, wave–particle interaction in the earth's radiation belt, particles’ dynamics during the geomagnetic storm, etc. The paper will present the engineering design and construction of the near-earth space plasma simulation system of the SPERF, with a focus on the critical technologies that have been resolved to achieve the scientific goals. Meanwhile, the possible physical issues that can be studied based on the apparatus are sketched briefly. The earth-based system is of great value in understanding the space plasma environment and supporting space exploration.
Compound words consist of two or more words which combine to form a single word or phrase that acts as one. In English, the head of compound words is usually, but not always, the right-most root (e.g., “paycheck” is a noun because the head, “check,” is a noun). The current study explores the effects of head position on language control by examining language switching performance through electroencephalography (EEG). Twenty-one pairs of Chinese (L1)–English (L2) bilinguals performed cued language switching in a simultaneous production and comprehension task. The results showed that bilinguals recognized the head position earlier both in production and comprehension. However, the language control of the head position during production occurred in the middle stage (N2), but in the late stage (LPC) during comprehension. These findings indicate that the head position in compound words exerts differential influences on language control.
To accelerate high-intensity heavy-ion beams to high energy in the booster ring (BRing) at the High-Intensity Heavy-Ion Accelerator Facility (HIAF) project, we take the typical reference particle 238U35+, which can be accelerated from an injection energy of 17 MeV/u to the maximal extraction energy of 830 MeV/u, as an example to study the basic processes of longitudinal beam dynamics, including beam capture, acceleration, and bunch merging. The voltage amplitude, the synchronous phase, and the frequency program of the RF system during the operational cycle were given, and the beam properties such as bunch length, momentum spread, longitudinal beam emittance, and beam loss were derived, firstly. Then, the beam properties under different voltage amplitude and synchronous phase errors were also studied, and the results were compared with the cases without any errors. Next, the beam properties with the injection energy fluctuation were also studied. The tolerances of the RF errors and injection energy fluctuation were dictated based on the CISP simulations. Finally, the effect of space charge at the low injection energy with different beam intensities on longitudinal emittance and beam loss was evaluated.
Craft story recall test in the National Alzheimer’s Coordinating Center Uniformed Data Set 3 (NACC UDS3) neuropsychological battery has been employed to assess verbal memory and assist clinical diagnosis of mild cognitive impairment (MCI) and dementia. While a Chinese version of the test was adapted, no existing literature has examined the diagnostic validity of the test in Chinese Americans. This study aimed to evaluate the predictive validity of both immediate and delayed recall.
Participants and Methods:
The Chinese version of Craft Story was administered in to 78 Chinese participants per their language preference of Mandarin or Cantonese. Outcome measures were verbatim and paraphrase recall of the story immediately and after a 20-minute delay. A multiple linear regression was performed to investigate the association of each outcome measure with age, education, gender, age when moved to the U.S., years in the U.S., and testing language. To assess its diagnostic value, cutoff standard deviation scores of -1.5 and -2.0 from the mean of the clinically cognitive normal participants were generated for MCI and dementia diagnoses, respectively. Due to the small sample size, a normative group fitting the mean age (73 years), years of education (12 years), and the majority gender (female) of the current sample were used to identify standard cut points. A receiver-operating characteristic analysis was used to compare predicted diagnosis with actual clinical diagnosis obtained through patients’ overall performance and a consensus meeting by licensed clinicians.
Results:
Younger age (p < 0.05) and being tested in Mandarin (p < .01) were positively associated with immediate and delayed recall. Strong positive correlations between each measure were observed (all p < .001), indicating a significant relationship between information encoded and retained. Among all the participants, 15 (19.2%) were diagnosed with MCI and 22 (28.2%) with dementia. For MCI diagnosis, the standard cutoff scores demonstrated adequate sensitivity (verbatim=82%, paraphrase=91%) but low specificity (verbatim=44%, paraphrase=67%) in all outcome measures. For dementia diagnosis, delayed recall showed strong sensitivity (100%) and adequate specificity (75%) in both verbatim and paraphrasing scores. Immediate recall paraphrase (sensitivity = 95%, specificity = 50%) showed a better sensitivity but lower specificity than verbatim scoring (sensitivity = 86%, specificity = 58%). The accuracy was higher in delayed recall for both MCI and dementia diagnosis. A preliminary analysis on the optimal cut points indicated higher cutoff scores to distinguish MCI and dementia from clinically cognitive normal population, and from each other (e.g., the optimal cut point for delayed verbatim in distinguishing MCI from normal is 8.0 (sensitivity=89%, specificity=73%, AUC=84.3%)).
Conclusions:
Consistent with previous literature, Craft Story delayed recall served as a more accurate diagnostic tool for both MCI and dementia compared to immediate recall in older Chinese Americans. However, poor specificity might increase the chance of following false positive subjects in clinical trials. In addition, testing language appeared to impact performance on verbal memory recall of constructed information. Thus, future studies should focus on developing normative scores that address both the overall cultural differences of Chinese Americans and the heterogeneity within this population.