Skip to main content

Nanoscale impedance and complex properties in energy-related systems

  • Wonyoung Lee (a1), Fritz B. Prinz (a2), Xi Chen (a3), S. Nonnenmann (a4), Dawn A. Bonnell (a5) and Ryan P. O’Hayre (a6)...

Atomic force microscopy (AFM)-based impedance spectroscopy provides localized impedance information of materials and interfaces at the nanoscale by utilizing the conductive AFM tip as a moving electrode to detect current response as a function of time and frequency under controlled environments. This capability enables AFM-based nanoscale impedance measurements to play a unique role in enhancing our understanding of many electronic and electrochemical devices. This article introduces the central concepts of AFM-based impedance measurement and reviews recent examples applying this technique to a variety of functional materials systems, in particular focusing on fuel cells, lithium-ion batteries, photoactive biomembranes, as well as other application examples.

Hide All
1.O’Hayre R., Cha S.-W., Colella W., Prinz F.B., Fuel Cell Fundamentals (Wiley, New York, 2006).
2.Nazri G.-A., Pistoia G., Eds., Lithium Batteries: Science and Technology (Springer, New York, 2009).
3.Sawa A., Mater. Today 11, 28 (2008).
4.Strukov D.B., Snider G.S., Stewart D.R., Williams R.S., Nature 453, 80 (2008).
5.Joachim C., Gimzewski J.K., Aviram A., Nature 408, 541 (2000).
6.He R., Yang P., Nat. Nanotechnol. 1, 42 (2006).
7.Nonnenmann S.S., Gallo E.M., Spanier J.E., Appl. Phys. Lett. 97, 102904 (2010).
8.O’Hayre R., Lee M., Prinz F.B., Kalinin S.V., in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, Kalinin S.V., Gruverman A., Eds. (Springer, New York 2007), vol. 1.
9.Shao R., Kalinin S.V., Bonnell D.A., Phys. Rev. Lett. 95, 197601 (2003).
10.O’Hayre R., Lee M., Prinz F.B., J. Appl. Phys. 95, 8382 (2004).
11.Kalinin S.V., Bonnell D.A., Appl. Phys. Lett. 78, 1306 (2001).
12.Shao R., Bonnell D.A., Jpn. J. Appl. Phys. 43, 4471 (2004).
13.O’Hayre R., Feng G., Nix W.D., Prinz F.B., J. Appl. Phys. 96, 3540 (2004).
14.Bussian D.A., O’Dea J.R., Metiu H., Buratto S.K., Nano Lett. 7, 227 (2007).
15.Aleksandrova E., Hiesgen R., Friedrich K.A., Roduner E., Phys. Chem. Chem. Phys. 9, 2735 (2007).
16.Aleksandrova E., Hink S., Hiesgen R., Roduner E., J. Phys. Condens. Matter 23, 234109 (2011).
17.Xie X., Kwon O., Zhu D.-M., Nguyen T.V., Lin G., J. Phys. Chem. B 111, 6134 (2007).
18.Kang Y., Kwon O., Xie X., Zhu D.-M., J. Phys. Chem. B 113, 15040 (2009).
19.Kwon O., Kang Y., Wu S., Zhu D.-M., J. Phys. Chem. B 114, 5365 (2010).
20.Kwon O., Wu S., Zhu D.-M., J. Phys. Chem. B 114, 14989 (2010).
21.He Q.G., Kusoglu A., Lucas I.T., Clark K., Weber A.Z., Kostecki R., J. Phys. Chem. B 115, 11650 (2011).
22.Vels Hansen K., Jacobsen T., Nørgaard A.-M., Ohmer N., Mogensena M., Electrochem. Solid-State Lett. 12, B144 (2009).
23.Wu Y., Vels Hansen K., Jacobsen T., Mogensen M., Solid State Ionics 197, 32 (2011).
24.Louie M.W., Hightower A., Haile S.M., ACS Nano 4, 2811 (2010).
25.Lee W., Lee M., Kim Y.-B., Prinz F.B., Nanotechnology 20, 445706 (2009).
26.Huang H., Gür T.M., Saito Y., Prinz F., Appl. Phys. Lett. 89, 143107 (2006).
27.Goodenough J.B., Annu. Rev. Mater. Res. 33, 91 (2003).
28.Wang S., Kobayashi T., Dokiya M., Hashimoto T., J. Electrochem. Soc. 147, 3606 (2000).
29.Vullum F., Teeters D., J. Power Sources 146, 804 (2005).
30.Vullum F., Teeters D., Nytén A., Thomas J., Solid State Ionics 177, 2833 (2006).
31.Bayet E., Huet F., Keddam M., Ogle K., Takenouti H., J. Electrochem. Soc. 144, L87 (1997).
32.Bhattacharyya A.J., Fleig J., Guo Y.-G., Maier J., Adv. Mater. 17, 2630 (2005).
33.Layson A., Gadad S., Teeters D., Electrochim. Acta 48, 2207 (2003).
34.Kushida K., Kuriyama K., Appl. Phys. Lett. 84, 3456 (2004).
35.Zhu J., Feng J., Lu L., Zeng K., J. Power Sources 197, 224 (2012).
36.Kostecki R., Kong F., Matsuo Y., McLarnon F., Electrochim. Acta 45, 225 (1999).
37.Matsuo Y., Kostecki R., McLarnon F., J. Electrochem. Soc. 148, A687 (2001).
38.Lipson A.L., Ginder R.S., Hersam M.C., Adv. Mater. 23, 5613 (2011).
39.Kuriyama K., Onoue A., Yuasa Y., Kushida K., Surf. Sci. 601, 2256 (2007).
40.Thackeray M.M., David W.I.F., Bruce P.G., Goodenough J.B., Mat. Res. Bull. 18, 461 (1983).
41.Davis J.J., Morgan D.A., Wrathmell C.L., Axford D.N., Zhao J., Wang N., J. Mater. Chem. 15, 2160 (2005).
42.Kathan-Galipeau K., Nanayakkara S., O’Brian P.A., Nikiforov M., Discher B.M., Bonnell D.A., ACS Nano 5, 4835 (2011).
43.Pingree L.S.C., Hersam M.C., Appl. Phys. Lett. 87, 233117 (2005).
44.Fumagalli L., Ferrari G., Sampietro M., Gomila G., Nano Lett. 9, 1604 (2009).
45.Arutunow A., Darowicki K., Zielinski A., Electrochim. Acta 56, 2372 (2011).
46.Darowicki K., Szocinski M., Zielinski A., Electrochim. Acta 55, 3741 (2010).
47.Lee M., O’Hayre R., Prinz F.B., Gur T.M., Appl. Phys. Lett. 85, 3552 (2004).
48.Lee W., Prinz F.B., J. Electrochem. Soc. 156, G125 (2009).
49.Lee W., Dasgupta N.P., Trejo O., Lee J.-R., Hwang J., Usui T., Prinz F.B., Langmuir 26, 6845 (2010).
50.Kruempelmann J., Balabajew M., Gellert M., Roling B., Solid State Ionics 198, 16 (2011).
51.Shao R., Kalinin S.V., Bonnell D.A., Appl. Phys. Lett. 82, 1869 (2003).
52.Kalinin S.V., Bonnell D.A., Nano Lett. 4, 555 (2004).
53.Kalinin S.V., Bonnell D.A., Phys. Rev. B 70, 235304 (2004).
54.Szot K., Speier W., Bihlmayer G., Waser R., Nat. Mater. 5, 312 (2006).
55.Choi B.J., Jeong D.S., Kim S.K., Rohde C., Choi S., Oh J.H., Kim H.J., Hwang C.S., Szot K., Waser R., Reichenberg B., Tiedke S., J. Appl. Phys. 98, 033715 (2005).
56.Lee D., Seong D.-J., Jo I., Xiang F., Dong R., Oh S., Hwang H., Appl. Phys. Lett. 90, 122104 (2007).
57.Lee M.H., Hwang C.S., Nanoscale 3, 490 (2011).
58.Darowicki K., Zielinski A., Electrochim. Acta 55, 7761 (2010).
59.Kalinin S.V., Shin J., Jesse S., Geohegan D., Baddorf A.P., Lilach Y., Moskovits M., Kolmakov A., J. Appl. Phys. 98, 044503 (2005).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 39 *
Loading metrics...

Abstract views

Total abstract views: 147 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.