We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
Turbulent circular pipe flows subjected to axial system rotation are studied using direct numerical simulations (DNS) for a wide range of rotation numbers of $Ro_b = 0\unicode{x2013}20$ at a fixed Reynolds number. To ensure that energetic turbulent eddy motions are captured at high rotation numbers, long pipes up to $L_z = 180{\rm \pi} R$ are used in DNS. Two types of energy-containing flow structures have been observed. The first type is hairpin structures that are characteristic of the turbulent boundary layer developing over the pipe wall for both non-rotating and axially rotating flows. The second type is Taylor columns forming at moderate and high rotation numbers. Based on the study of two-point autocorrelation coefficients, it is observed that Taylor columns exhibit quasi-periods in both axial and azimuthal directions. According to the premultiplied spectra, Taylor columns feature one single characteristic axial length scale at the moderate rotation numbers but two at high rotation numbers. It is discovered that the axial system rotation suppresses the sweep events systematically and impedes the formation of hairpin structures. As the rotation number is increased, the turbulence kinetic energy held by Taylor columns enhances rapidly associated with significant increases in their axial length scales.
The proton–boron ${}^{11}{\text{B}}\left( {p,\alpha } \right)2\alpha $ reaction (p-11B) is an interesting alternative to the D-T reaction ${\text{D}}\left( {{\text{T}},{\text{n}}} \right)\alpha $ for fusion energy, since the primary reaction channel is aneutronic and all reaction partners are stable isotopes. We measured the α production yield using protons in the 120–260 keV energy range impinging onto a hydrogen–boron-mixed target, and for the first time present experimental evidence of an increase of α-particle yield relative to a pure boron target. The measured enhancement factor is approximately 30%. The experiment results indicate a higher reactivity, and that may lower the condition for p-11B fusion ignition.
To evaluate the variations in COVID-19 case fatality rates (CFRs) across different regions and waves, and the impact of public health interventions, social and economic characteristics, and demographic factors on COVID-19 CFRs, we collected data from 30 countries with the highest incidence rate in three waves. We summarized the CFRs of different countries and continents in each wave through meta-analysis. Spearman’s correlation and multiple linear regression were employed to estimate the correlation between influencing factors and reduction rates of CFRs. Significant differences in CFRs were observed among different regions during the three waves (P < 0.001). An association was found between the changes in fully vaccinated rates (rs = 0.41), population density (rs = 0.43), the proportion of individuals over 65 years old (rs = 0.43), and the reduction rates of case fatality rate. Compared to Wave 1, the reduction rates in Wave 2 were associated with population density (β = 0.19, 95%CI: 0.05–0.33) and smoking rates (β = −4.66, 95%CI: −8.98 – −0.33), while in Wave 3 it was associated with booster vaccine rates (β = 0.60, 95%CI: 0.11–1.09) and hospital beds per thousand people (β = 4.15, 95%CI: 1.41–6.89). These findings suggest that the COVID-19 CFRs varied across different countries and waves, and promoting booster vaccinations, increasing hospital bed capacity, and implementing tobacco control measures can help reduce CFRs.
Music and language are unique communication tools in human society, where stress plays a crucial role. Many studies have examined the recognition of lexical stress in Indo-European languages using beat/rhythm priming, but few studies have examined the cross-domain relationship between musical and linguistic stress in tonal languages. The current study investigates how musical stress and lexical stress influence lexical stress recognition in Mandarin. In the auditory priming experiment, disyllabic Mandarin words with initial or final stress were primed by disyllabic words or beats with either congruent or incongruent stress patterns. Results showed that the incongruent condition elicited larger P2 and the late positive component (LPC) amplitudes than the congruent condition. Moreover, the Strong-Weak primes elicited larger N400 amplitudes than the Weak-Strong primes, and the Weak-Strong primes yielded larger LPC amplitudes than the Strong-Weak primes. The findings reveal the neural correlates of the cross-domain influence between music and language during lexical stress recognition in Mandarin.
In preparation for an experiment with a laser-generated intense proton beam at the Laser Fusion Research Center at Mianyang to investigate the 11B(p,α)2α reaction, we performed a measurement at very low proton energy between 140 keV and 172 keV using the high-voltage platform at the Institute of Modern Physics, Lanzhou. The aim of the experiment was to test the ability to use CR-39 track detectors for cross-section measurements and to remeasure the cross-section of this reaction close to the first resonance using the thick target approach. We obtained the cross-section σ = 45.6 ± 12.5 mb near 156 keV. Our result confirms the feasibility of CR-39 type track detector for nuclear reaction measurement also in low-energy regions.
As the southernmost part of the central segment of the Central Asian Orogenic Belt, the northern Alxa area is characterized by abundant Permian magmatism and records key information on the geological evolution of the Palaeo-Asian Ocean. This study reports new zircon U–Pb and Lu–Hf isotopic and whole-rock geochemical data of the early Permian (285–286 Ma) Huisentala gabbro and Huodonghaer diorites from the Zhusileng–Hangwula Belt in the northern Alxa area. The gabbro is characterized by high Al, Ca, Mg# and light rare-earth elements, and low K, P and high field strength elements (e.g., Ti, Nb and Ta). Furthermore, the gabbro shows heterogeneous zircon ϵHf(t) value (−2.5 to +2.6). The Huodonghaer diorites show high MgO (3.46–6.32 wt%), Mg# (49–58), Sr (408–617 ppm) and Ba (223–419 ppm), and low FeOT/MgO (1.27–1.83) and TiO2 (0.48–0.90 wt%), with geochemical features similar to the high-Mg andesite/diorite. They show radiogenic zircon ϵHf(t) values of +1.2 to +4.9 and high Th/Nb ratios. These features suggest that the Huisentala gabbro and the Huodonghaer diorites were derived from the partial melting of mantle peridotite that was metasomatized by subduction-related fluids and by subducted sediment-derived melts, respectively.
The advent of time-domain sky surveys has generated a vast amount of light variation data, enabling astronomers to investigate variable stars with large-scale samples. However, this also poses new opportunities and challenges for the time-domain research. In this paper, we focus on the classification of variable stars from the Catalina Surveys Data Release 2 and propose an imbalanced learning classifier based on Self-paced Ensemble (SPE) method. Compared with the work of Hosenie et al. (2020), our approach significantly enhances the classification Recall of Blazhko RR Lyrae stars from 12% to 85%, mixed-mode RR Lyrae variables from 29% to 64%, detached binaries from 68% to 97%, and LPV from 87% to 99%. SPE demonstrates a rather good performance on most of the variable classes except RRab, RRc, and contact and semi-detached binary. Moreover, the results suggest that SPE tends to target the minority classes of objects, while Random Forest is more effective in finding the majority classes. To balance the overall classification accuracy, we construct a Voting Classifier that combines the strengths of SPE and Random Forest. The results show that the Voting Classifier can achieve a balanced performance across all classes with minimal loss of accuracy. In summary, the SPE algorithm and Voting Classifier are superior to traditional machine learning methods and can be well applied to classify the periodic variable stars. This paper contributes to the current research on imbalanced learning in astronomy and can also be extended to the time-domain data of other larger sky survey projects (LSST, etc.).
A novel data-driven modal analysis method, reduced-order variational mode decomposition (RVMD), is proposed, inspired by the Hilbert–Huang transform and variational mode decomposition (VMD), to resolve transient or statistically non-stationary flow dynamics. First, the form of RVMD modes (referred to as an ‘elementary low-order dynamic process’, ELD) is constructed by combining low-order representation and the idea of intrinsic mode function, which enables the computed modes to characterize the non-stationary properties of space–time fluid flows. Then, the RVMD algorithm is designed based on VMD to achieve a low-redundant adaptive extraction of ELDs in flow data, with the modes computed by solving an elaborate optimization problem. Further, a combination of RVMD and Hilbert spectral analysis leads to a modal-based time-frequency analysis framework in the Hilbert view, providing a potentially powerful tool to discover, quantify and analyse the transient and non-stationary dynamics in complex flow problems. To provide a comprehensive evaluation, the computational cost and parameter dependence of RVMD are discussed, as well as the relations between RVMD and some classic modal decomposition methods. Finally, the virtues and utility of RVMD and the modal-based time-frequency analysis framework are well demonstrated via two canonical problems: the transient cylinder wake and the planar supersonic screeching jet.
The western Mongolian Lake Zone was a Neoproterozoic to early Paleozoic volcanic arc where tuffs, lavas, fossiliferous siliciclastics, and carbonates accumulated during the early Cambrian. An uppermost Cambrian Series 2 (upper Stage 4) trilobite assemblage is described here from the Burgasutay Formation representing a continuous lower Cambrian succession at the Seer Ridge of the Great Lake Depression. The new assemblage is dominated by dorypygids and consists of 13 trilobite genera belonging to nine families including Catinouyia heyunensis new species. These fossils comprise the youngest and richest lower Cambrian trilobite assemblage in Mongolia. The composition of the Lake Zone fauna suggests its biogeographic affinity with the Siberian Platform and Altay-Sayan Foldbelt, but the presence of inouyiids also implies a connection of this region with East Gondwana.
Based on the chemical reaction model proposed by Park, the ‘blackout’ of a reentry vehicle is studied in this paper. The temperature, pressure and electron density distribution characteristics around the reentry vehicle were simulated at various flight speeds and altitudes by USim. Subsequently, the scattering matrix method was used to study the transmission characteristics of terahertz waves in ‘blackout’. The simulation results show that the temperature around the aircraft is mainly affected by speed, the pressure is mainly affected by the altitude and electron density is affected by both of these factors. The calculation results show that the transmission characteristics of terahertz waves in plasma are mainly affected by electron density, while the effects of temperature and pressure cannot be ignored either.
The southeastern Central Asian Orogenic Belt (CAOB) records the assembly process between several micro-continental blocks and the North China Craton (NCC), with the consumption of the Paleo-Asian Ocean (PAO), but whether the S-wards subduction of the PAO beneath the northern NCC was ongoing during Carboniferous–Permian time is still being debated. A key issue to resolve this controversy is whether the Carboniferous magmatism in the northern NCC was continental arc magmatism. The Alxa Block is the western segment of the northern NCC and contiguous to the southeastern CAOB, and their Carboniferous–Permian magmatism could have occurred in similar tectonic settings. In this contribution, new zircon U–Pb ages, elemental geochemistry and Sr–Nd isotopic analyses are presented for three early Carboniferous granitic plutons in the southwestern Alxa Block. Two newly identified aluminous A-type granites, an alkali-feldspar granite (331.6 ± 1.6 Ma) and a monzogranite (331.8 ± 1.7 Ma), exhibit juvenile and radiogenic Sr–Nd isotopic features, respectively. Although a granodiorite (326.2 ± 6.6 Ma) is characterized by high Sr/Y ratios (97.4–139.9), which is generally treated as an adikitic feature, this sample has highly radiogenic Sr–Nd isotopes and displays significantly higher K2O/Na2O ratios than typical adakites. These three granites were probably derived from the partial melting of Precambrian continental crustal sources heated by upwelling asthenosphere in lithospheric extensional setting. Regionally, both the Alxa Block and the southeastern CAOB are characterized by the formation of early Carboniferous extension-related magmatic rocks but lack coeval sedimentary deposits, suggesting a uniform lithospheric extensional setting rather than a simple continental arc.
Different from developed countries, there is a paucity of research examining how the Dietary Approaches to Stop Hypertension (DASH) and Mediterranean diets relate to lipids in less-developed ethnic minority regions (LEMR). A total of 83 081 participants from seven ethnic groups were retrieved from the baseline data of the China Multi-Ethnic Cohort study, which was conducted in less-developed Southwest China between May 2018 and September 2019. Multivariable linear regression models were then used to examine the associations of the DASH and alternative Mediterranean diet (AMED) scores, assessed by modified DASH score and AMED, as well as their components with total cholesterol (TC), LDL-cholesterol, HDL-cholesterol, TAG and TC/HDL-cholesterol. The DASH scores were negatively associated with TC, HDL-cholesterol and TAG. Comparing the highest quintiles with the lowest DASH scores, TC decreased 0·0708 (95 % CI −0·0923, −0·0493) mmol/l, HDL-cholesterol decreased 0·0380 (95 % CI −0·0462, −0·0299) mmol/l and TAG decreased 0·0668 (95 % CI −0·0994, −0·0341) mmol/l. The AMED scores were negatively associated with TC, LDL-cholesterol and HDL-cholesterol. Comparing the highest quintiles with the lowest AMED scores, TC decreased 0·0816 (95 % CI −0·1035, −0·0597) mmol/l, LDL-cholesterol decreased 0·0297 (95 % CI −0·0477, −0·0118) mmol/l and HDL-cholesterol decreased 0·0275 (95 % CI −0·0358, −0·0192) mmol/l. Although both the DASH diet and the Mediterranean diet were negatively associated with blood lipids, those associations showed different patterns in LEMR, particularly for TAG and HDL-cholesterol.
Poor utilisation efficiency of carbohydrate always leads to metabolic phenotypes in fish. The intestinal microbiota plays an important role in carbohydrate degradation. Whether the intestinal bacteria could alleviate high-carbohydrate diet (HCD)-induced metabolic phenotypes in fish remains unknown. Here, a strain affiliated to Bacillus amyloliquefaciens was isolated from the intestine of Nile tilapia. A basal diet (CON), HCD or HCD supplemented with B. amy SS1 (HCB) was used to feed fish for 10 weeks. The beneficial effects of B. amy SS1 on weight gain and protein accumulation were observed. Fasting glucose and lipid deposition were decreased in the HCB group compared with the HCD group. High-throughput sequencing showed that the abundance of acetate-producing bacteria was increased in the HCB group relative to the HCD group. Gas chromatographic analysis indicated that the concentration of intestinal acetate was increased dramatically in the HCB group compared with that in the HCD group. Glucagon-like peptide-1 was also increased in the intestine and serum of the HCB group. Thus, fish were fed with HCD, HCD supplemented with sodium acetate at 900 mg/kg (HLA), 1800 mg/kg (HMA) or 3600 mg/kg (HHA) diet for 8 weeks, and the HMA and HHA groups mirrored the effects of B. amy SS1. This study revealed that B. amy SS1 could alleviate the metabolic phenotypes caused by HCD by enriching acetate-producing bacteria in fish intestines. Regulating the intestinal microbiota and their metabolites might represent a powerful strategy for fish nutrition modulation and health maintenance in future.
Social cognition has not previously been assessed in treatment-naive patients with chronic schizophrenia, in patients over 60 years of age, or in patients with less than 5 years of schooling.
Methods
We revised a commonly used measure of social cognition, the Reading the Mind in the Eyes Test (RMET), by expanding the instructions, using both self-completion and interviewer-completion versions (for illiterate respondents), and classifying each test administration as ‘successfully completed’ or ‘incomplete’. The revised instrument (RMET-CV-R) was administered to 233 treatment-naive patients with chronic schizophrenia (UT), 154 treated controls with chronic schizophrenia (TC), and 259 healthy controls (HC) from rural communities in China.
Results
In bivariate and multivariate analyses, successful completion rates and RMET-CV-R scores (percent correct judgments about emotion exhibited in 70 presented slides) were highest in HC, intermediate in TC, and lowest in UT (adjusted completion rates, 97.0, 72.4, and 49.9%, respectively; adjusted RMET-CV-R scores, 45.4, 38.5, and 34.6%, respectively; all p < 0.02). Stratified analyses by the method of administration (self-completed v. interviewer-completed) and by education and age (‘educated-younger’ v. ‘undereducated-older’) show the same relationship between groups (i.e. NC>TC>UT), though not all differences remain statistically significant.
Conclusions
We find poorer social cognition in treatment-naive than in treated patients with chronic schizophrenia. The discriminant validity of RMET-CV-R in undereducated, older patients demonstrates the feasibility of administering revised versions of RMET to patients who may otherwise be considered ineligible due to education or age by changing the method of test administration and carefully assessing respondents' ability to complete the task successfully.
In this study, the response of a supercritical round jet to various excitation modes including varicose, helical, flapping, dual varicose/helical and dual varicose/flapping is studied using large eddy simulations. A translation method is proposed to enhance the accuracy of the equation-of-state and transport correlations. Results show that the excitations, especially the dual modes and the varicose mode (when the forcing frequency matches the preferred mode in the potential core), considerably increase the turbulent mixing, the pitch distance and the penetration depth of the coherent structures as compared with the unexcited case. However, the excitations, especially the dual modes, de-energize the coherent structures and reduce the degree of three-dimensionality of the coherent structures. The excitations reduce the potential core length drastically, especially under the flapping and the dual mode excitations. Analyses show that the dual varicose/flapping mode excitations have the highest impacts on the jet development and the cross-section shape as compared with the other modes. Moreover, the dual varicose/flapping excitations have the highest impact on the large-scale turbulent mixing. However, the small-scale turbulent mixing is at the maximum value, when the supercritical jet is stimulated by the dual varicose/flapping mode excitations with the varicose-to-flapping frequency ratio of 2. The cross-correlations between the density fluctuations and the imposed perturbations indicate that the impact of the excitations on the turbulent diffusion is at the maximum value at the potential core breakdown location, while the correlation diminishes at the other locations.
In the laser plasma interaction of quantum electrodynamics (QED)-dominated regime, γ-rays are generated due to synchrotron radiation from high-energy electrons traveling in a strong background electromagnetic field. With the aid of 2D particle-in-cell code including QED physics, we investigate the preplasma effect on the γ-ray generation during the interaction between an ultraintense laser pulse and solid targets. We found that with the increasing preplasma scale length, the γ-ray emission is enhanced significantly and finally reaches a steady state. Meanwhile, the γ-ray beam becomes collimated. This shows that, in some cases, the preplasmas will be piled up acting as a plasma mirror in the underdense preplasma region, where the γ-rays are produced by the collision between the forward electrons and the reflected laser fields from the piled plasma. The piled plasma plays the same role as the usual reflection mirror made from a solid target. Thus, a single solid target with proper scale length preplasma can serve as a manufactural and robust γ-ray source.
Primary liver cancer is the third leading cause of cancer-related death worldwide. Most patients are diagnosed at late stages with poor prognosis; thus, identification of modifiable risk factors for primary prevention of liver cancer is urgently needed. The well-established risk factors of liver cancer include chronic infection with hepatitis B virus (HBV) or hepatitis C virus (HCV), heavy alcohol consumption, metabolic diseases such as obesity and diabetes, and aflatoxin exposure. However, a large proportion of cancer cases worldwide cannot be explained by current known risk factors. Dietary factors have been suspected as important, but dietary aetiology of liver cancer remains poorly understood. In this review, we summarised and evaluated the observational studies of diet including single nutrients, food and food groups, as well as dietary patterns with the risk of developing liver cancer. Although there are large knowledge gaps between diet and liver cancer risk, current epidemiological evidence supports an important role of diet in liver cancer development. For example, exposure to aflatoxin, heavy alcohol drinking and possibly dairy product (not including yogurt) intake increase, while intake of coffee, fish and tea, light-to-moderate alcohol drinking and several healthy dietary patterns (e.g. Alternative Healthy Eating Index) may decrease liver cancer risk. Future studies with large sample size and accurate diet measurement are warranted and need to consider issues such as the possible aetiological heterogeneity between liver cancer subtypes, the influence of chronic HBV or HCV infection, the high-risk populations (e.g. cirrhosis) and a potential interplay with host gut microbiota or genetic variations.
Underground Nuclear Astrophysics in China (JUNA) will take the advantage of the ultra-low background in Jinping underground lab. High current accelerator with an ECR source and detectors were commissioned. JUNA plans to study directly a number of nuclear reactions important to hydrostatic stellar evolution at their relevant stellar energies. At the first period, JUNA aims at the direct measurements of 25Mg(p,γ)26 Al, 19F(p,α) 16 O, 13C(α, n) 16O and 12C(α,γ) 16O near the Gamow window. The current progress of JUNA will be given.