A Guide to Real Variables provides aid and conceptual support for the student studying for the qualifying exam in real variables. Beginning with the foundations of the subject, the text moves rapidly but thoroughly through basic topics like completeness, convergence, sequences, series, compactness, topology and the like. All the basic examples like the Cantor set, the Weierstrass nowhere differentiable function, the Weierstrass approximation theory, the Baire category theorem, and the Ascoli-Arzela theorem are treated. The book contains over 100 examples, and most of the basic proofs. It illustrates both the theory and the practice of this sophisticated subject. Graduate students studying for the qualifying exams will find this book to be a concise, focused and informative resource. Professional mathematicians who need a quick review of the subject, or need a place to look up a key fact, will find this book to be a useful resource too. Steven Krantz is well-known for his skill in expository writing and this volume confirms it. He is the author of more than 50 books, and more than 150 scholarly papers. The MAA has awarded him both the Beckenbach Book Prize and the Chauvenet Prize.
Virtually every graduate program in the US, if not the world, requires its students to take a qualifying exam in real analysis.... Mathematicians who are looking for a quick review of the subect of key facts will find this book a useful resource. Recommended.
J. T. Zerger Source: CHOICE
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.