Published online by Cambridge University Press: 05 June 2012
The goal of this and subsequent chapters is to introduce the algorithmic methods that are used most frequently to solve geometric problems. Generally speaking, computational geometry has recourse to all of the classical algorithmic techniques. Readers examining all the algorithms described in this book from a methodological point of view will distinguish essentially three methods: the incremental method, the divide-and-conquer method, and the sweep method.
The incremental method is perhaps the method which is the most largely emphasized in the book. It is also the most natural method, since it consists of processing the input to the problem one item at a time. The algorithm initiates the process by solving the problem for a small subset of the input, then maintains the solution to the problem as the remaining data are inserted one by one. In some cases, the algorithm may initially sort the input, in order to take advantage of the fact that the data are sorted. In other cases, the order in which the data are processed is indifferent, sometimes even deliberately random. In the latter case, we are dealing with the randomized incremental method, which will be stated and analyzed at length in chapter 5. We therefore will not expand further on the incremental method in this chapter.
The divide-and-conquer method is one of the oldest methods for the design of algorithms, and its use goes well beyond geometry. In computational geometry, this method leads to very efficient algorithms for certain problems.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.