Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-7mrzp Total loading time: 0 Render date: 2026-01-01T11:20:44.654Z Has data issue: false hasContentIssue false

2 - Epigenetics: The Gene Environment Interface

Published online by Cambridge University Press:  06 September 2017

Eric B. Keverne
Affiliation:
University of Cambridge
Get access

Information

Type
Chapter
Information
Beyond Sex Differences
Genes, Brains and Matrilineal Evolution
, pp. 19 - 51
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Berger, S. L. & Sassone-Corsi, P. (2016). Metabolic signaling to chromatin. Cold Srping Harb. Perspect. Biol. 8: a019483.Google ScholarPubMed
Bhan, A. & Mandal, S. S. (2016). Estradiol-induced transcriptional regulation of long non-coding RNA, HOTAIR. Methods Bol. Biol. 1366: 395412.CrossRefGoogle ScholarPubMed
Biason-Lauber, A. & Chabolissier, M. C. (2015). Ovarian development and disease: the known and the unexpected. Semin. Cell Dev. Biol. 45: 5967.CrossRefGoogle ScholarPubMed
Bird, A. (2007). Perceptions of epigenetics. Nature 447: 39698.CrossRefGoogle ScholarPubMed
Bourc’his, D. & Bestor, T. H. (2006). Origins of extreme sexual dimorphism in genomic imprinting. Cytogenet. Genome Res. 113: 3640.CrossRefGoogle ScholarPubMed
Champagne, F. A. (2012). Interplay between social experiences and the genome: epigenetic consequences for behavior. Adv. Genet. 77: 3357.CrossRefGoogle ScholarPubMed
Cohen, H.Y., Miller, C.A., Bitterman, K. J., et al. (2004). Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305: 39092.CrossRefGoogle ScholarPubMed
Colquitt, B. M., Allen, W. E., Barnea, G., et al. (2013). Alteration of genic 5-hydroxymethylcytosine patterning in olfactory neurons correlates with changes in gene expression and cell identity. Proc. Natl Acad. Sci. USA 110: 14682–87.CrossRefGoogle ScholarPubMed
Comings, D. E. (1972). The genetic organisation of chromosomes. Adv. Hum. Genet. 3: 237431.CrossRefGoogle Scholar
Coufal, N. G., Garcia-Perez, J. L., Peng, G. E., et al. (2011). Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotranposition in human neural stem cells. Proc. Natl Acad. Sci. USA 108: 20382–87.CrossRefGoogle Scholar
Daxinger, L. & Whitelaw, E. (2012). Understanding trangenerational epigenetic inheritance via the gametes in mammals. Nat. Rev. Genet. 13: 15362.CrossRefGoogle Scholar
de Koning, A. P., Gu, W., Castoe, A., et al. (2011). Repetitive elements may compromise over two-thirds of the human genome. PLoS Genet. 7: e1002384.CrossRefGoogle Scholar
El Najj, N., Schneider, E., Lehnen, H., et al. (2014). Epigenetics and life-long consequences of an adverse nutritional and diabetic intrauterine environment. Reproduction 148: R111–20.Google Scholar
Erwin, J. A., Marchetto, M. C. & Gage, F. H. (2014). Mobile DNA elements in the generation of diversity and complexity in the brain. Nat. Rev. Neurosci. 15: 497506.CrossRefGoogle ScholarPubMed
Fox, N. A., Almas, A. N., Degnan, K. A., et al. (2011). The effects of severe psychosocial deprivation and foster care intervention on cognitive development at 8 years of age: findings from the Bucharest Early Intervention Project. J. Child Psychol. Psychiatry 52: 91928.CrossRefGoogle ScholarPubMed
Gall, J. G. (1981). Chromosome structure and the C-value paradox. J. Cell Biol. 91: 3s14s.CrossRefGoogle ScholarPubMed
Gurdon, J. B. (2013). The egg and the nucleus: a battle for supremacy. Development 140: 2449–56.CrossRefGoogle ScholarPubMed
Hatanake, Y., Shimizu, N., Nishikawa, S., et al. (2013). GSE is a maternal factor involved in active DNA demethylation in zygotes. PLoS ONE 8: e60205.CrossRefGoogle Scholar
Heard, E. & Martienssen, R. A. (2014). Transgenerational epigenetic inheritence: myths and mechanisms. Cell 157: 95109.CrossRefGoogle ScholarPubMed
Jamison, K. R. (1989). Mood disorders and patterns of creativity in British writers and artists. Psychiatry 52: 12534.CrossRefGoogle ScholarPubMed
Jedrusik, A., Bruce, A. W. & Tan, M. H. (2010). Maternally and zygotically provided Cdx2 have novel and critical roles for early development of the mouse embryo. Dev. Biol. 344: 6678.CrossRefGoogle ScholarPubMed
Jenkins, T. G. & Carrell, D. T. (2012). Dynamic alterations in the paternal epigenetic landscape following fertlization. Front. Genet. 3: 143.CrossRefGoogle Scholar
Kaas, G. A., Zhong, C., Eason, D. E., et al. (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron 79: 1086–93.CrossRefGoogle ScholarPubMed
Kaeberlein, M., Powers, R. W. 3rd., Steffen, K. K., et al. (2005). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310: 1193–96.CrossRefGoogle ScholarPubMed
Keverne, E. B. (2004). Understanding well-being in the evolutionary context of brain development Phil. Trans. R. Soc. Lond. B 359: 1349–58.CrossRefGoogle ScholarPubMed
Keverne, E. B. (2006). Trophoblast regulation of maternal endocrine function and behaviour. In: Moffett, A., Loke, C. & McLaren, A. (eds.), Biology and Pathology of Trophoblast. New York, NY: Cambridge University Press, pp. 14863.CrossRefGoogle Scholar
Keverne, E. B. (2014a). Significance of epigenetics for understanding brain development, brain evolution and behaviour. Neuroscience 264: 20717.CrossRefGoogle ScholarPubMed
Keverne, E. B. (2014b). Mammalian viviparity: a complex niche in the evolution of genomic imprinting. Heredity 113: 13844.CrossRefGoogle ScholarPubMed
Keverne, E. B. (2015). Genomic imprinting, action, and interaction of maternal and fetal genomes. Proc. Natl Acad. Sci. USA 112: 6834–40.CrossRefGoogle ScholarPubMed
Knight, S. R., Davidson, C., Young, A. M., et al. (2012). Allopregnanolone protects against dopamine-induced striatal damage after in vitro ischaemia via interaction at GABA A receptors. J. Neuroendocrinol. 24: 1135–43.CrossRefGoogle ScholarPubMed
Kohli, R. M. & Zhang, Y. (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502: 47279.CrossRefGoogle ScholarPubMed
Kumar, A., Behen, M. E., Singsoonsud, P., et al. (2014). Microstructural abnormalities in language and limbic pathways in orphanage-reared children: a diffusion tensor imagining study. J. Child Neurol. 29: 31825.CrossRefGoogle Scholar
Kung, J. T. Y., Colognori, D. & Lee, J. T. (2013). Long noncoding RNAs: past, present, and future. Genetics 193: 65169.CrossRefGoogle ScholarPubMed
Leib, J. (2008). Two manic-depressives, two tyrants, two world wars. Med. Hypotheses 70: 88892.CrossRefGoogle Scholar
Levenson, J. M., Roth, T. L., Lubin, F. D., et al. (2006). Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J. Biol. Chem. 281: 15763–73.CrossRefGoogle ScholarPubMed
Levin, A. R., Seanah, C. H., Fox, N. A., et al. (2014). Motor outcomes in children exposed to early psychosocial deprivation. J. Pediatr. 164: 12329.CrossRefGoogle ScholarPubMed
Lewin, B. (2006). Essential Genes. Upper Saddle River, NJ: Pearson Education Inc.Google Scholar
Li, X., Ito, M., Zhou, F., et al. (2008). A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell 15: 54757.CrossRefGoogle ScholarPubMed
Malki, S., van der Heijden, G. W., O’Donnell, K. A., et al. (2014). A role for retrotransposon LINE-1 in fetal oocyte attrition in mice. Dev. Cell 29: 52133.CrossRefGoogle ScholarPubMed
Marchetti, F., Essers, J., Kanaar, R., et al. (2007). Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. Proc. Natl Acad. Sci. USA 104: 17725–29.CrossRefGoogle ScholarPubMed
Masri, S., Rigor, P., Cervantes, M., et al. (2014). Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 158: 65972.CrossRefGoogle ScholarPubMed
Nakagawa, M. & Yamanaka, S. (2010). Reprogramming of somatic cells to pluripotency. Adv. Exp. Mol. Biol. 695: 21524.CrossRefGoogle ScholarPubMed
Ohno, S. (1972). So much ‘junk’ DNA in our genome. In: Smith, H. H (ed.), Evolution of Genetic Systems. New York, NY: Gordon & Breach, pp. 36670.Google Scholar
Provencal, N. M., Suderman, M. J., Guillemin, C., et al. (2012). The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. J. Neurosci. 32: 15626–42.CrossRefGoogle ScholarPubMed
Rajendran, R., Garva, R., Drstic-Demonacos, M., et al. (2011). Sirtuins: molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription. J. Biomed. Biotechnol, 2011: 368972.Google ScholarPubMed
Reitz, C., Tosto, G., Mayteaux, R., et al. (2012). Genetic variants in the fat and obesity associated (FTO) gene and risk of Alzheimer’s disease. PLoS ONE 7: e50354.CrossRefGoogle ScholarPubMed
Rudenko, A., Dawlaty, M. M., Seo, J., et al. (2013). Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron 79: 1109–22.CrossRefGoogle ScholarPubMed
Surani, M. A., Hayashi, K. & Hajkova, P. (2007). Genetic and epigenetic regulators of pluripotency. Cell 128: 74762.CrossRefGoogle ScholarPubMed
Szyf, M. (2013). How do environments talk to genes? Nat. Neurosci. 16: 24.CrossRefGoogle ScholarPubMed
Tang, W. W., Kobayashi, T., Irie, N., et al. (2016). Specification and epigenetic programming of the human germ line. Nat. Rev. Genet. 17: 585600.CrossRefGoogle ScholarPubMed
Tuesta, L. M. & Zhang, Y. (2014). Mechanisms of epigenetic memory and addiction. EMBO J. 33: 1091–103.CrossRefGoogle ScholarPubMed
Turelli, P. (2014). Interplay of TRIM and DNA methylation in controlling human endogenous retroelements. Genome Res. 24: 1260–70.CrossRefGoogle Scholar
Waddington, C. (1946). How Animals Develop. London: George Allen & Unwin Ltd.Google Scholar
Wossido, M., Arand, J., Sebastiano, V., et al. (2010). Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J. 29: 1877–88.Google Scholar
Wu, J., Huang, B., Yin, Q., et al. (2016). The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534: 65257.CrossRefGoogle ScholarPubMed
Zhang, R. R., Cui, Q. Y., Murai, K., et al. (2013). Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell 13: 23745.CrossRefGoogle ScholarPubMed
Zhao, J., Sun, B. K., Erwin, J. A., et al. (2008). Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322: 75056.CrossRefGoogle Scholar

Accessibility standard: Unknown

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×