Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T22:36:34.598Z Has data issue: false hasContentIssue false

3 - Mapping the Human Brain from the Prenatal Period to Infancy Using 3D Magnetic Resonance Imaging

Cortical Folding and Early Grey and White Maturation Processes

from Part I - Neurobiological Constraints and Laws of Cognitive Development

Published online by Cambridge University Press:  24 February 2022

Olivier Houdé
Affiliation:
Université de Paris V
Grégoire Borst
Affiliation:
Université de Paris V
Get access

Summary

Human brain development is a complex and dynamic process that begins during the first weeks of pregnancy and lasts until early adulthood. This chapter will focus on the developmental window from the prenatal period to infancy, probably the most dynamic period across the entire lifespan. The availability of non-invasive three-dimensional Magnetic Resonance Imaging (MRI) methodologies has changed the paradigm and allows investigations of the living human brain structure – for example, micro- and macrostructural features of cortical and subcortical regions and their connections, including cortical sulcation/gyrification, area, and thickness, as well as white matter microstructure and connectivity, see Boxes 1–3 (Sections 3.6.1–3.6.3) – beginning in utero. Because of its relative safety, MRI is well-adapted to study individuals at multiple time points and to longitudinally follow the changes in brain structure and function that underlie the early stages of cognitive development.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adibpour, P., Dehaene-Lambertz, G., & Dubois, J. (2015). Relating the structural and functional maturation of visual and auditory white matter pathways with diffusion imaging and event-related potentials in infants. Proceedings of ISMRM Meeting, May 30–June 5, 2015, Toronto, p. 645.Google Scholar
Adibpour, P., Dubois, J., & Dehaene-Lambertz, G. (2018a). Right but not left hemispheric discrimination of faces in infancy. Nature Human Behaviour, 2, 6779.CrossRefGoogle Scholar
Adibpour, P., Dubois, J., Moutard, M. L., & Dehaene-Lambertz, G. (2018b). Early asymmetric inter-hemispheric transfer in the auditory network: Insights from infants with corpus callosum agenesis. Brain Structure and Function, 223, 28932905.Google Scholar
Adibpour, P., Lebenberg, J., Kabdebon, C., Dehaene-Lambertz, G., & Dubois, J. (2020). Anatomo-functional correlates of auditory development in infancy. Developmental Cognitive Neuroscience, 42, 100752.Google Scholar
Alexander, D. C., Dyrby, T. B., Nilsson, M., & Zhang, H. (2019). Imaging brain microstructure with diffusion MRI: Practicality and applications. NMR in Biomedicine, 32, e3841.Google Scholar
Amiez, C., Wilson, C. R. E., & Procyk, E. (2018). Variations of cingulate sulcal organization and link with cognitive performance. Scientific Reports, 8, 13988.Google Scholar
Anderson, V., Spencer-Smith, M., & Wood, A. (2011). Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain, 134, 21972221.Google Scholar
Andescavage, N. N., du Plessis, A., McCarter, R., Serag, A., Evangelou, I., Vezina, G., Robertson, R., & Limperopoulos, C. (2017). Complex trajectories of brain development in the healthy human fetus. Cerebral Cortex, 27, 52745283.Google ScholarPubMed
Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry – The methods. Neuroimage, 11, 805821.Google Scholar
Bajic, D., Wang, C., Kumlien, E., Mattsson, P., Lundberg, S., Eeg-Olofsson, O., & Raininko, R. (2008). Incomplete inversion of the hippocampus – A common developmental anomaly. European Radiology, 18, 138142.CrossRefGoogle ScholarPubMed
Ball, G., Aljabar, P., Zebari, S., Tusor, N., Arichi, T., Merchant, N., Robinson, E. C., Ogundipe, E., Rueckert, D., Edwards, A. D., & Counsell, S. J. (2014). Rich-club organization of the newborn human brain. Proceedings of the National Academy of Sciences (USA), 111, 74567461.Google Scholar
Ball, G., Pazderova, L., Chew, A., Tusor, N., Merchant, N., Arichi, T., Allsop, J. M., Cowan, F. M., Edwards, A. D., & Counsell, S. J. (2015). Thalamocortical connectivity predicts cognition in children born preterm. Cerebral Cortex, 25, 43104318.Google Scholar
Ball, G., Srinivasan, L., Aljabar, P., Counsell, S. J., Durighel, G., Hajnal, J. V., Rutherford, M. A., & Edwards, A. D. (2013). Development of cortical microstructure in the preterm human brain. Proceedings of the National Academy of Sciences (USA), 110, 95419546.Google Scholar
Barkovich, A. J., Kjos, B. O., Jackson, D. E., Jr., & Norman, D. (1988). Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology, 166, 173180.Google Scholar
Batalle, D., O’Muircheartaigh, J., Makropoulos, A., Kelly, C. J., Dimitrova, R., Hughes, E. J., Hajnal, J. V., Zhang, H., Alexander, D. C., David Edwards, A., & Counsell, S. J. (2019). Different patterns of cortical maturation before and after 38 weeks gestational age demonstrated by diffusion MRI in vivo. Neuroimage, 185, 764775.Google Scholar
Baumann, N., & Pham-Dinh, D. (2001). Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiological Reviews, 81, 871927.CrossRefGoogle ScholarPubMed
Betzel, R. F., & Bassett, D. S. (2017). Multi-scale brain networks. Neuroimage, 160, 7383.Google Scholar
Borrell, V. (2018). How cells fold the cerebral cortex. Journal of Neuroscience, 38, 776783.Google Scholar
Borst, G., Cachia, A., Tissier, C., Ahr, E., Simon, G., & Houdé, O. (2016). Early cerebral constraint on reading skills of 10-years-old children. Mind, Brain and Education, 10, 4754.Google Scholar
Borst, G., Cachia, A., Vidal, J., Simon, G., Fischer, C., Pineau, A., Poirel, N., Mangin, J. F., & Houde, O. (2014). Folding of the anterior cingulate cortex partially explains inhibitory control during childhood: A longitudinal study. Developmental Cognitive Neuroscience, 9, 126135.Google Scholar
Bozek, J., Makropoulos, A., Schuh, A., Fitzgibbon, S., Wright, R., Glasser, M. F., Coalson, T. S., O’Muircheartaigh, J., Hutter, J., Price, A. N., Cordero-Grande, L., Teixeira, R., Hughes, E., Tusor, N., Baruteau, K. P., Rutherford, M. A., Edwards, A. D., Hajnal, J. V., Smith, S. M., Rueckert, D., Jenkinson, M., & Robinson, E. C. (2018). Construction of a neonatal cortical surface atlas using multimodal surface matching in the developing human connectome project. Neuroimage, 179, 1129.CrossRefGoogle ScholarPubMed
Brody, B. A., Kinney, H. C., Kloman, A. S., & Gilles, F. H. (1987). Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. Journal of Neuropathology & Experimental Neurology, 46, 283301.Google Scholar
Brown, C. J., Miller, S. P., Booth, B. G., Andrews, S., Chau, V., Poskitt, K. J., & Hamarneh, G. (2014). Structural network analysis of brain development in young preterm neonates. Neuroimage, 101, 667680.Google Scholar
Bui, T., Daire, J. L., Chalard, F., Zaccaria, I., Alberti, C., Elmaleh, M., Garel, C., Luton, D., Blanc, N., & Sebag, G. (2006). Microstructural development of human brain assessed in utero by diffusion tensor imaging. Pediatric Radiology, 36, 11331140.Google Scholar
Bultmann, E., Spineli, L. M., Hartmann, H., & Lanfermann, H. (2018). Measuring in vivo cerebral maturation using age-related T2 relaxation times at 3T. Brain and Development, 40, 8593.CrossRefGoogle ScholarPubMed
Cachia, A., Borst, G., Tissier, C., Fisher, C., Plaze, M., Gay, O., Riviere, D., Gogtay, N., Giedd, J., Mangin, J. F., Houde, O., & Raznahan, A. (2016). Longitudinal stability of the folding pattern of the anterior cingulate cortex during development. Developmental Cognitive Neuroscience, 19, 122127.Google Scholar
Cachia, A., Borst, G., Vidal, J., Fischer, C., Pineau, A., Mangin, J. F., & Houde, O. (2014). The shape of the ACC contributes to cognitive control efficiency in preschoolers. Journal of Cognitive Neuroscience, 26, 96106.Google Scholar
Cachia, A., Del Maschio, N., Borst, G., Della Rosa, P. A., Pallier, C., Costa, A., Houde, O., & Abutalebi, J. (2017). Anterior cingulate cortex sulcation and its differential effects on conflict monitoring in bilinguals and monolinguals. Brain and Language, 175, 5763.Google Scholar
Cachia, A., Roell, M., Mangin, J. F., Sun, Z. Y., Jobert, A., Braga, L., Houde, O., Dehaene, S., & Borst, G. (2018). How interindividual differences in brain anatomy shape reading accuracy. Brain Structure and Function, 223, 701712.CrossRefGoogle ScholarPubMed
Cao, M., Huang, H., & He, Y. (2017). Developmental connectomics from infancy through early childhood. Trends in Neurosciences, 40, 494506.CrossRefGoogle ScholarPubMed
Chevalier, N., Kurth, S., Doucette, M. R., Wiseheart, M., Deoni, S. C., Dean, D. C., 3rd, O’Muircheartaigh, J., Blackwell, K. A., Munakata, Y., & LeBourgeois, M. K. (2015). Myelination is associated with processing speed in early childhood: Preliminary insights. PLoS ONE, 10, e0139897.Google Scholar
Chi, J. G., Dooling, E. C., & Gilles, F. H. (1977). Gyral development of the human brain. Annals of Neurology, 1, 8693.Google Scholar
Cohen, A. L., Fair, D. A., Dosenbach, N. U. F., Miezin, F. M., Dierker, D., Van Essen, D. C., Schlaggar, B. L., & Petersen, S. E. (2008). Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage, 41, 4557.CrossRefGoogle ScholarPubMed
Croteau-Chonka, E. C., Dean, D. C., 3rd, Remer, J., Dirks, H., O’Muircheartaigh, J., & Deoni, S. C. (2016). Examining the relationships between cortical maturation and white matter myelination throughout early childhood. Neuroimage, 125, 413421.CrossRefGoogle ScholarPubMed
Cury, C., Toro, R., Cohen, F., Fischer, C., Mhaya, A., Samper-Gonzalez, J., Hasboun, D., Mangin, J. F., Banaschewski, T., Bokde, A. L., Bromberg, U., Buechel, C., Cattrell, A., Conrod, P., Flor, H., Gallinat, J., Garavan, H., Gowland, P., Heinz, A., Ittermann, B., Lemaitre, H., Martinot, J. L., Nees, F., Paillere Martinot, M. L., Orfanos, D. P., Paus, T., Poustka, L., Smolka, M. N., Walter, H., Whelan, R., Frouin, V., Schumann, G., Glaunes, J. A., Colliot, O., & Imagen Consortium. (2015). Incomplete hippocampal inversion: A comprehensive MRI study of over 2000 subjects. Frontiers in Neuroanatomy, 9, 160.Google Scholar
De Guio, F., Mangin, J. F., Riviere, D., Perrot, M., Molteno, C. D., Jacobson, S. W., Meintjes, E. M., & Jacobson, J. L. (2014). A study of cortical morphology in children with fetal alcohol spectrum disorders. Human Brain Mapping, 35, 22852296.CrossRefGoogle ScholarPubMed
Dean, D. C., 3rd, O’Muircheartaigh, J., Dirks, H., Travers, B. G., Adluru, N., Alexander, A. L., & Deoni, S. C. (2016). Mapping an index of the myelin g-ratio in infants using magnetic resonance imaging. Neuroimage, 132, 225237.Google Scholar
Dean, D. C., 3rd, Planalp, E. M., Wooten, W., Adluru, N., Kecskemeti, S. R., Frye, C., Schmidt, C. K., Schmidt, N. L., Styner, M. A., Goldsmith, H. H., Davidson, R. J., & Alexander, A. L. (2017). Mapping white matter microstructure in the one month human brain. Scientific Reports, 7, 9759.Google Scholar
Dehaene-Lambertz, G., & Spelke, E. S. (2015). The infancy of the human brain. Neuron, 88, 93109.Google Scholar
Deipolyi, A. R., Mukherjee, P., Gill, K., Henry, R. G., Partridge, S. C., Veeraraghavan, S., Jin, H., Lu, Y., Miller, S. P., Ferriero, D. M., Vigneron, D. B., & Barkovich, A. J. (2005). Comparing microstructural and macrostructural development of the cerebral cortex in premature newborns: Diffusion tensor imaging versus cortical gyration. Neuroimage, 27, 579586.Google Scholar
Del Maschio, N., Sulpizio, S., Fedeli, D., Ramanujan, K., Ding, G., Weekes, B. S., Cachia, A., & Abutalebi, J. (2019). ACC sulcal patterns and their modulation on cognitive control efficiency across lifespan: A neuroanatomical study on bilinguals and monolinguals. Cerebral Cortex, 29, 30913101.Google Scholar
Deoni, S. C., Dean, D. C., 3rd, O’Muircheartaigh, J., Dirks, H., & Jerskey, B. A. (2012). Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping. Neuroimage, 63, 10381053.Google Scholar
Deoni, S. C., Dean, D. C., 3rd, Remer, J., Dirks, H., & O’Muircheartaigh, J. (2015). Cortical maturation and myelination in healthy toddlers and young children. Neuroimage, 115, 147161.Google Scholar
Deoni, S. C., Mercure, E., Blasi, A., Gasston, D., Thomson, A., Johnson, M., Williams, S. C., & Murphy, D. G. (2011). Mapping infant brain myelination with magnetic resonance imaging. Journal of Neuroscience, 31, 784791.Google Scholar
Deoni, S. C., O’Muircheartaigh, J., Elison, J. T., Walker, L., Doernberg, E., Waskiewicz, N., Dirks, H., Piryatinsky, I., Dean, D. C., 3rd, & Jumbe, N. L. (2016). White matter maturation profiles through early childhood predict general cognitive ability. Brain Structure and Function, 221, 11891203.Google Scholar
Dockstader, C., Gaetz, W., Rockel, C., & Mabbott, D. J. (2012). White matter maturation in visual and motor areas predicts the latency of visual activation in children. Human Brain Mapping, 33, 179191.Google Scholar
Dubois, J., Adibpour, P., Poupon, C., Hertz-Pannier, L., & Dehaene-Lambertz, G. (2016a). MRI and M/EEG studies of the white matter development in human fetuses and infants: Review and opinion. Brain Plasticity, 2, 4969.Google Scholar
Dubois, J., Benders, M., Borradori-Tolsa, C., Cachia, A., Lazeyras, F., Ha-Vinh Leuchter, R., Sizonenko, S. V., Warfield, S. K., Mangin, J. F., & Huppi, P. S. (2008a). Primary cortical folding in the human newborn: An early marker of later functional development. Brain, 131, 20282041.Google Scholar
Dubois, J., Benders, M., Cachia, A., Lazeyras, F., Leuchter, R. H. V., Sizonenko, S. V., Borradori-Tolsa, C., Mangin, J. F., & Huppi, P. S. (2008b). Mapping the early cortical folding process in the preterm newborn brain. Cerebral Cortex, 18, 14441454.CrossRefGoogle ScholarPubMed
Dubois, J., & Dehaene-Lambertz, G. (2015). Fetal and postnatal development of the cortex: Insights from MRI and genetics. In Toga, Arthur W. (ed.), Brain Mapping: An Encyclopedic Reference (Vol. 2, pp. 1119). Cambridge, MA: Academic Press.Google Scholar
Dubois, J., Dehaene-Lambertz, G., Kulikova, S., Poupon, C., Huppi, P. S., & Hertz-Pannier, L. (2014). The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience, 276, 4871.CrossRefGoogle ScholarPubMed
Dubois, J., Dehaene-Lambertz, G., Perrin, M., Mangin, J. F., Cointepas, Y., Duchesnay, E., Le Bihan, D., & Hertz-Pannier, L. (2008c). Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging. Human Brain Mapping, 29, 1427.Google Scholar
Dubois, J., Dehaene-Lambertz, G., Soares, C., Cointepas, Y., Le Bihan, D., & Hertz-Pannier, L. (2008d). Microstructural correlates of infant functional development: Example of the visual pathways. Journal of Neuroscience, 28, 19431948.Google Scholar
Dubois, J., Hertz-Pannier, L., Dehaene-Lambertz, G., Cointepas, Y., & Le Bihan, D. (2006). Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: A feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage, 30, 11211132.Google Scholar
Dubois, J., Kostovic, I., & Judas, M. (2015). Development of structural and functional connectivity. In Toga, A. W. (ed.), Brain Mapping: An Encyclopedic Reference (Vol. 2, pp. 423437). Cambridge, MA: Academic Press.Google Scholar
Dubois, J., Lefevre, J., Angleys, H., Leroy, F., Fischer, C., Lebenberg, J., Dehaene-Lambertz, G., Borradori-Tolsa, C., Lazeyras, F., Hertz-Pannier, L., Mangin, J. F., Huppi, P. S., & Germanaud, D. (2019). The dynamics of cortical folding waves and prematurity-related deviations revealed by spatial and spectral analysis of gyrification. Neuroimage, 185, 934946.Google Scholar
Dubois, J., Poupon, C., Thirion, B., Simonnet, H., Kulikova, S., Leroy, F., Hertz-Pannier, L., & Dehaene-Lambertz, G. (2016b). Exploring the early organization and maturation of linguistic pathways in the human infant brain. Cerebral Cortex, 26, 22832298.Google Scholar
Dudink, J., Lequin, M., van Pul, C., Buijs, J., Conneman, N., van Goudoever, J., & Govaert, P. (2007). Fractional anisotropy in white matter tracts of very-low-birth-weight infants. Pediatric Radiology, 37, 12161223.Google Scholar
Dudink, J., Buijs, J., Govaert, P., van Zwol, A. L., Conneman, N., van Goudoever, J. B., & Lequin, M. (2010). Diffusion tensor imaging of the cortical plate and subplate in very-low-birth-weight infants. Pediatric Radiology, 40, 13971404.Google Scholar
Eaton-Rosen, Z., Melbourne, A., Orasanu, E., Cardoso, M. J., Modat, M., Bainbridge, A., Kendall, G. S., Robertson, N. J., Marlow, N., & Ourselin, S. (2015). Longitudinal measurement of the developing grey matter in preterm subjects using multi-modal MRI. Neuroimage, 111, 580589.Google Scholar
Eaton-Rosen, Z., Scherrer, B., Melbourne, A., Ourselin, S., Neil, J. J., & Warfield, S. K. (2017). Investigating the maturation of microstructure and radial orientation in the preterm human cortex with diffusion MRI. Neuroimage, 162, 6572.Google Scholar
Eickhoff, S., Walters, N. B., Schleicher, A., Kril, J., Egan, G. F., Zilles, K., Watson, J. D., & Amunts, K. (2005). High-resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex. Human Brain Mapping, 24, 206215.Google Scholar
Engelbrecht, V., Rassek, M., Preiss, S., Wald, C., & Modder, U. (1998). Age-dependent changes in magnetization transfer contrast of white matter in the pediatric brain. AJNR American Journal of Neuroradiology, 19, 19231929.Google Scholar
Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U. F., Church, J. A., Miezin, F. M., Schlaggar, B. L., & Petersen, S. E. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Computational Biology, 5, e1000381.Google Scholar
Fair, D. A., Dosenbach, N. U. F., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. M., Barch, D. M., Raichle, M. E., Petersen, S. E., & Schlaggar, B. L. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences, 104, 1350713512.Google Scholar
Feess-Higgins, A., & Larroche, J. C. (1987). Development of the Human Foetal Brain. An Anatomical Atlas. Paris: INSERM CNRS.Google Scholar
Ferradal, S. L., Gagoski, B., Jaimes, C., Yi, F., Carruthers, C., Vu, C., Litt, J. S., Larsen, R., Sutton, B., Grant, P. E., & Zollei, L. (2019). System-specific patterns of thalamocortical connectivity in early brain development as revealed by structural and functional MRI. Cerebral Cortex, 29, 12811229.Google Scholar
Fields, R. D. (2008). White matter in learning, cognition and psychiatric disorders. Trends in Neurosciences, 31, 361370.CrossRefGoogle ScholarPubMed
Fischl, B. (2012). FreeSurfer. Neuroimage, 62, 774781.Google Scholar
Flechsig, P. (1920). Anatomie des Menschlichen Gehirn und Rückenmarks, auf myelogenetischer grundlage. Stuttgart: G. Thieme.Google Scholar
Fornito, A., Yucel, M., Wood, S., Stuart, G. W., Buchanan, J. A., Proffitt, T., Anderson, V., Velakoulis, D., & Pantelis, C. (2004). Individual differences in anterior cingulate/paracingulate morphology are related to executive functions in healthy males. Cerebral Cortex, 14, 424431.Google Scholar
Foubet, O., Trejo, M., & Toro, R. (2019). Mechanical morphogenesis and the development of neocortical organisation. Cortex, 118, 315326.Google Scholar
Friedrichs-Maeder, C. L., Griffa, A., Schneider, J., Huppi, P. S., Truttmann, A., & Hagmann, P. (2017). Exploring the role of white matter connectivity in cortex maturation. PLoS ONE, 12, e0177466.Google Scholar
Geng, X., Gouttard, S., Sharma, A., Gu, H., Styner, M., Lin, W., Gerig, G., & Gilmore, J. H. (2012). Quantitative tract-based white matter development from birth to age 2 years. Neuroimage, 61, 542557.Google Scholar
Germanaud, D., Lefevre, J., Fischer, C., Bintner, M., Curie, A., des Portes, V., Eliez, S., Elmaleh-Berges, M., Lamblin, D., Passemard, S., Operto, G., Schaer, M., Verloes, A., Toro, R., Mangin, J. F., & Hertz-Pannier, L. (2014). Simplified gyral pattern in severe developmental microcephalies? New insights from allometric modeling for spatial and spectral analysis of gyrification. Neuroimage, 102, 317331.Google Scholar
Giedd, J. N., & Rapoport, J. L. (2010). Structural MRI of pediatric brain development: What have we learned and where are we going? Neuron, 67, 728734.Google Scholar
Gilles, F., Shankle, W., & Dooling, E. (1983). Myelinated tracts: Growth patterns. In Gilles, F., Leviton, A., & Dooling, E. (eds.), The Developing Human Brain (pp. 117183). Boston, MA: Butterworth Heinemann.Google Scholar
Gilmore, J. H., Lin, W., Prastawa, M. W., Looney, C. B., Vetsa, Y. S., Knickmeyer, R. C., Evans, D. D., Smith, J. K., Hamer, R. M., Lieberman, J. A., & Gerig, G. (2007). Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain. Journal of Neuroscience, 27, 12551260.Google Scholar
Gilmore, J. H., Shi, F., Woolson, S. L., Knickmeyer, R. C., Short, S. J., Lin, W., Zhu, H., Hamer, R. M., Styner, M., & Shen, D. (2012). Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cerebral Cortex, 22, 24782485.Google Scholar
Guevara, M., Román, C., Houenou, J., Duclap, D., Poupon, C., Mangin, J. F., & Guevara, P. (2017). Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography. Neuroimage, 147, 703725.Google Scholar
Habas, P. A., Scott, J. A., Roosta, A., Rajagopalan, V., Kim, K., Rousseau, F., Barkovich, A. J., Glenn, O. A., & Studholme, C. (2012). Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cerebral Cortex, 22, 1325.Google Scholar
Harding, G. F., Grose, J., Wilton, A., & Bissenden, J. G. (1989). The pattern reversal VEP in short-gestation infants. Electroencephalography and Clinical Neurophysiology, 74, 7680.Google Scholar
Haselgrove, J., Moore, J., Wang, Z., Traipe, E., & Bilaniuk, L. (2000). A method for fast multislice T1 measurement: Feasibility studies on phantoms, young children, and children with Canavan’s disease. Journal of Magnetic Resonance Imaging, 11, 360367.Google Scholar
Hilgetag, C. C., & Barbas, H. (2006). Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Computational Biology, 2(3), e22.Google Scholar
Hilgetag, C. C., & Barbas, H. (2009). Sculpting the brain. Scientific American, 300, 6671.Google Scholar
Hill, J., Dierker, D., Neil, J., Inder, T., Knutsen, A., Harwell, J., Coalson, T., & Van Essen, D. (2010). A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human infants. Journal of Neuroscience, 30, 22682276.Google Scholar
Horowitz, A., Barazany, D., Tavor, I., Bernstein, M., Yovel, G., & Assaf, Y. (2015). In vivo correlation between axon diameter and conduction velocity in the human brain. Brain Structure and Function, 220, 17771788.Google Scholar
Huang, H., Jeon, T., Sedmak, G., Pletikos, M., Vasung, L., Xu, X., Yarowsky, P., Richards, L. J., Kostovic, I., Sestan, N., & Mori, S. (2013). Coupling diffusion imaging with histological and gene expression analysis to examine the dynamics of cortical areas across the fetal period of human brain development. Cerebral Cortex, 23, 26202631.Google Scholar
Huang, H., Xue, R., Zhang, J., Ren, T., Richards, L. J., Yarowsky, P., Miller, M. I., & Mori, S. (2009). Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. Journal of Neuroscience, 29, 42634273.Google Scholar
Huang, H., Zhang, J., Wakana, S., Zhang, W., Ren, T., Richards, L. J., Yarowsky, P., Donohue, P., Graham, E., van Zijl, P. C., & Mori, S. (2006). White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage, 33, 2738.Google Scholar
Huppi, P. S., & Dubois, J. (2006). Diffusion tensor imaging of brain development. Seminars in Fetal and Neonatal Medicine, 11, 489497.Google Scholar
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, 387, 167178.Google Scholar
Innocenti, G. M., Caminiti, R., & Aboitiz, F. (2015). Comments on the paper by Horowitz et al. (2014). Brain Structure and Function, 220, 17891790.Google Scholar
Johansen-Berg, H., & Behrens, T. E. J. (2013). Diffusion MRI: From Quantitative Measurement to In Vivo Neuroanatomy. Cambridge, MA: Academic Press.Google Scholar
Judas, M., Rados, M., Jovanov-Milosevic, N., Hrabac, P., Stern-Padovan, R., & Kostovic, I. (2005). Structural, immunocytochemical, and MR imaging properties of periventricular crossroads of growing cortical pathways in preterm infants. AJNR American Journal of Neuroradiology, 26, 26712684.Google Scholar
Kapellou, O., Counsell, S. J., Kennea, N., Dyet, L., Saeed, N., Stark, J., Maalouf, E., Duggan, P., Ajayi-Obe, M., Hajnal, J., Allsop, J. M., Boardman, J., Rutherford, M. A., Cowan, F., & Edwards, A. D. (2006). Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Medicine, 3, e265.Google Scholar
Kasprian, G., Brugger, P. C., Weber, M., Krssak, M., Krampl, E., Herold, C., & Prayer, D. (2008). In utero tractography of fetal white matter development. Neuroimage, 43, 213224.Google Scholar
Kersbergen, K. J., Leemans, A., Groenendaal, F., van der Aa, N. E., Viergever, M. A., de Vries, L. S., & Benders, M. J. (2014). Microstructural brain development between 30 and 40 week corrected age in a longitudinal cohort of extremely preterm infants. Neuroimage, 103, 214224.Google Scholar
Kersbergen, K. J., Leroy, F., Isgum, I., Groenendaal, F., de Vries, L. S., Claessens, N. H. P., van Haastert, I. C., Moeskops, P., Fischer, C., Mangin, J. F., Viergever, M. A., Dubois, J., & Benders, M. (2016). Relation between clinical risk factors, early cortical changes, and neurodevelopmental outcome in preterm infants. Neuroimage, 142, 301310.Google Scholar
Keunen, K., Benders, M. J., Leemans, A., Fieret-Van Stam, P. C., Scholtens, L. H., Viergever, M. A., Kahn, R. S., Groenendaal, F., de Vries, L. S., & van den Heuvel, M. P. (2017a). White matter maturation in the neonatal brain is predictive of school age cognitive capacities in children born very preterm. Developmental Medicine & Child Neurology, 59, 939946.Google Scholar
Keunen, K., Counsell, S. J., & Benders, M. J. (2017b). The emergence of functional architecture during early brain development. Neuroimage, 160, 214.Google Scholar
Kinney, H. C., Brody, B. A., Kloman, A. S., & Gilles, F. H. (1988). Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. Journal of Neuropathology & Experimental Neurology, 47, 217234.CrossRefGoogle ScholarPubMed
Klyachko, V. A., & Stevens, C. F. (2003). Connectivity optimization and the positioning of cortical areas. Proceedings of the National Academy of Sciences (USA), 100, 79377941.Google Scholar
Knickmeyer, R. C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J. K., Hamer, R. M., Lin, W., Gerig, G., & Gilmore, J. H. (2008). A structural MRI study of human brain development from birth to 2 years. Journal of Neuroscience, 28, 1217612182.Google Scholar
Kostovic, I., & Jovanov-Milosevic, N. (2006). The development of cerebral connections during the first 20–45 weeks’ gestation. Seminars in Fetal and Neonatal Medicine, 11, 415422.Google Scholar
Kostovic, I., Jovanov-Milosevic, N., Rados, M., Sedmak, G., Benjak, V., Kostovic-Srzentic, M., Vasung, L., Culjat, M., Huppi, P., & Judas, M. (2014a). Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches. Brain Structure and Function, 219, 231253.Google Scholar
Kostovic, I., & Judas, M. (2006). Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants. Developmental Medicine & Child Neurology, 48, 388393.Google Scholar
Kostovic, I., & Judas, M. (2015). Embryonic and fetal development of the human cerebral cortex. In Toga, A. W. (ed.), Brain Mapping: An Encyclopedic Reference (Vol. 2, pp. 423437). Cambridge, MA: Academic Press.Google Scholar
Kostovic, I., Kostovic-Srzentic, M., Benjak, V., Jovanov-Milosevic, N., & Rados, M. (2014b). Developmental dynamics of radial vulnerability in the cerebral compartments in preterm infants and neonates. Frontiers in Neurology, 5, 139.Google Scholar
Kostovic, I., Petanjek, Z., & Judas, M. (1993). Early areal differentiation of the human cerebral cortex: entorhinal area. Hippocampus, 3, 447458.Google Scholar
Kostovic, I., & Rakic, P. (1990). Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. The Journal of Comparative Neurology, 297, 441470.Google Scholar
Kroenke, C. D., & Bayly, P. V. (2018). How forces fold the cerebral cortex. Journal of Neuroscience, 38, 767775.Google Scholar
Krogsrud, S. K., Fjell, A. M., Tamnes, C. K., Grydeland, H., Mork, L., Due-Tonnessen, P., Bjornerud, A., Sampaio-Baptista, C., Andersson, J., Johansen-Berg, H., & Walhovd, K. B. (2015). Changes in white matter microstructure in the developing brain – A longitudinal diffusion tensor imaging study of children from 4 to 11years of age. Neuroimage, 124, 473486.Google Scholar
Kucharczyk, W., Macdonald, P. M., Stanisz, G. J., & Henkelman, R. M. (1994). Relaxivity and magnetization transfer of white matter lipids at MR imaging: Importance of cerebrosides and pH. Radiology, 192, 521529.Google Scholar
Kulikova, S., Hertz-Pannier, L., Dehaene-Lambertz, G., Buzmakov, A., Poupon, C., & Dubois, J. (2015). Multi-parametric evaluation of the white matter maturation. Brain Structure and Function, 220, 36573672.Google Scholar
Kulikova, S., Hertz-Pannier, L., Dehaene-Lambertz, G., Poupon, C., & Dubois, J. (2016). A new strategy for fast MRI-based quantification of the myelin water fraction: Application to brain imaging in infants. PLoS ONE, 11, e0163143.Google Scholar
Kunz, N., Zhang, H., Vasung, L., O’Brien, K. R., Assaf, Y., Lazeyras, F., Alexander, D. C., & Huppi, P. S. (2014). Assessing white matter microstructure of the newborn with multi-shell diffusion MRI and biophysical compartment models. Neuroimage, 96, 288299.Google Scholar
Kwan, K. Y., Sestan, N., & Anton, E. S. (2012). Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development, 139, 15351546.Google Scholar
LaMantia, A. S., & Rakic, P. (1990). Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. Journal of Neuroscience, 10, 21562175.Google Scholar
Le Guen, Y., Auzias, G., Leroy, F., Noulhiane, M., Dehaene-Lambertz, G., Duchesnay, E., Mangin, J. F., Coulon, O., & Frouin, V. (2018). Genetic influence on the sulcal pits: On the origin of the first cortical folds. Cerebral Cortex, 28, 19221933.Google Scholar
Lebenberg, J., Labit, M., Auzias, G., Mohlberg, H., Fischer, C., Rivière, D., Duchesnay, E., Kabdebon, C., Leroy, F., Labra, N., Poupon, F., Dickscheid, T., Hertz-Pannier, L., Poupon, C., Dehaene-Lambertz, G., Hüppi, P., Amunts, K., Dubois, J., & Mangin, J. F. (2018). A framework based on sulcal constraints to align preterm, infant and adult human brain images acquired in vivo and post mortem. Brain Structure and Function, 223, 41534168.Google Scholar
Lebenberg, J., Mangin, J. F., Thirion, B., Poupon, C., Hertz-Pannier, L., Leroy, F., Adibpour, P., Dehaene-Lambertz, G., & Dubois, J. (2019). Mapping the asynchrony of cortical maturation in the infant brain: A MRI multi-parametric clustering approach. Neuroimage, 185, 641653.Google Scholar
Lebenberg, J., Poupon, C., Thirion, B., Leroy, F., Mangin, J.-F., Dehaene-Lambertz, G., & Dubois, J. (2015). Clustering the infant brain tissues based on microstructural properties and maturation assessment using multi-parametric MRI. Paper presented at the 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).Google Scholar
Lee, J., Birtles, D., Wattam-Bell, J., Atkinson, J., & Braddick, O. (2012). Latency measures of pattern-reversal VEP in adults and infants: Different information from transient P1 response and steady-state phase. Investigative Ophthalmology & Visual Science, 53, 13061314.Google Scholar
Leppert, I. R., Almli, C. R., McKinstry, R. C., Mulkern, R. V., Pierpaoli, C., Rivkin, M. J., & Pike, G. B. (2009). T(2) relaxometry of normal pediatric brain development. Journal of Magnetic Resonance Imaging, 29, 258267.Google Scholar
Leroy, F., Glasel, H., Dubois, J., Hertz-Pannier, L., Thirion, B., Mangin, J. F., & Dehaene-Lambertz, G. (2011). Early maturation of the linguistic dorsal pathway in human infants. Journal of Neuroscience, 31, 15001506.CrossRefGoogle ScholarPubMed
Li, G., Nie, J., Wang, L., Shi, F., Gilmore, J. H., Lin, W., & Shen, D. (2014). Measuring the dynamic longitudinal cortex development in infants by reconstruction of temporally consistent cortical surfaces. Neuroimage, 90, 266279.Google Scholar
Li, G., Nie, J., Wang, L., Shi, F., Lin, W., Gilmore, J. H., & Shen, D. (2013). Mapping region-specific longitudinal cortical surface expansion from birth to 2 years of age. Cerebral Cortex, 23, 27242733.Google Scholar
Llinares-Benadero, C., & Borrell, V. (2019). Deconstructing cortical folding: genetic, cellular and mechanical determinants. Nature Reviews Neuroscience, 20, 161176.Google Scholar
Lohmann, G., von Cramon, D. Y., & Colchester, A. C. (2008). Deep sulcal landmarks provide an organizing framework for human cortical folding. Cerebral Cortex, 18, 14151420.Google Scholar
Lyall, A. E., Shi, F., Geng, X., Woolson, S., Li, G., Wang, L., Hamer, R. M., Shen, D., & Gilmore, J. H. (2015). Dynamic development of regional cortical thickness and surface area in early childhood. Cerebral Cortex, 25, 22042212.CrossRefGoogle ScholarPubMed
Maas, L. C., Mukherjee, P., Carballido-Gamio, J., Veeraraghavan, S., Miller, S. P., Partridge, S. C., Henry, R. G., Barkovich, A. J., & Vigneron, D. B. (2004). Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants. Neuroimage, 22, 11341140.Google Scholar
Makropoulos, A., Aljabar, P., Wright, R., Hüning, B., Merchant, N., Arichi, T., Tusor, N., Hajnal, J. V., Edwards, A. D., Counsell, S. J., & Rueckert, D. (2016). Regional growth and atlasing of the developing human brain. Neuroimage, 125, 456478.Google Scholar
Mangin, J. F., Jouvent, E., & Cachia, A. (2010). In-vivo measurement of cortical morphology: Means and meanings. Current Opinion in Neurology, 23, 359367.Google Scholar
Mangin, J. F., Le Guen, Y., Labra, N., Grigis, A., Frouin, V., Guevara, M., Fischer, C., Riviere, D., Hopkins, W. D., Regis, J., & Sun, Z. Y. (2019). “Plis de passage” deserve a role in models of the cortical folding process. Brain Topography, 32, 10351048.Google Scholar
Mangin, J. F., Lebenberg, J., Lefranc, S., Labra, N., Auzias, G., Labit, M., Guevara, M., Mohlberg, H., Roca, P., Guevara, P., Dubois, J., Leroy, F., Dehaene-Lambertz, G., Cachia, A., Dickscheid, T., Coulon, O., Poupon, C., Rivière, D., Amunts, K., & Sun, Z. Y. (2016). Spatial normalization of brain images and beyond. Medical Image Analysis, 33, 127133.Google Scholar
Manjón, J. V., & Coupé, P. (2016). volBrain: An online MRI brain volumetry system. Frontiers in Neuroinformatics, 10, Article 30, 1–14.Google Scholar
Matsumae, M., Kurita, D., Atsumi, H., Haida, M., Sato, O., & Tsugane, R. (2001). Sequential changes in MR water proton relaxation time detect the process of rat brain myelination during maturation. Mechanisms of Ageing and Development, 122, 12811291.Google Scholar
Matsuzawa, J., Matsui, M., Konishi, T., Noguchi, K., Gur, R. C., Bilker, W., & Miyawaki, T. (2001). Age-related volumetric changes of brain gray and white matter in healthy infants and children. Cerebral Cortex, 11, 335342.Google Scholar
McCart, R. J., & Henry, G. H. (1994). Visual corticogeniculate projections in the cat. Brain Research, 653, 351356.Google Scholar
McCulloch, D. L., Orbach, H., & Skarf, B. (1999). Maturation of the pattern-reversal VEP in human infants: A theoretical framework. Vision Research, 39, 36733680.Google Scholar
McCulloch, D. L., & Skarf, B. (1991). Development of the human visual system: Monocular and binocular pattern VEP latency. Investigative Ophthalmology & Visual Science, 32, 23722381.Google ScholarPubMed
McGowan, J. C. (1999). The physical basis of magnetization transfer imaging. Neurology, 53, S3S7.Google Scholar
McKinstry, R. C., Mathur, A., Miller, J. H., Ozcan, A., Snyder, A. Z., Schefft, G. L., Almli, C. R., Shiran, S. I., Conturo, T. E., & Neil, J. J. (2002). Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. Cerebral Cortex, 12, 12371243.Google Scholar
Melbourne, A., Eaton-Rosen, Z., Orasanu, E., Price, D., Bainbridge, A., Cardoso, M. J., Kendall, G. S., Robertson, N. J., Marlow, N., & Ourselin, S. (2016). Longitudinal development in the preterm thalamus and posterior white matter: MRI correlations between diffusion weighted imaging and T2 relaxometry. Human Brain Mapping, 37, 24792492.Google Scholar
Mezer, A., Yeatman, J. D., Stikov, N., Kay, K. N., Cho, N. J., Dougherty, R. F., Perry, M. L., Parvizi, J., Hua, L. H., Butts-Pauly, K., & Wandell, B. A. (2013). Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging. Nature Medicine, 19, 16671672.Google Scholar
Miller, S. L., Huppi, P. S., & Mallard, C. (2016). The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. Journal of Physiology, 594, 807823.Google Scholar
Mitter, C., Prayer, D., Brugger, P. C., Weber, M., & Kasprian, G. (2015). In vivo tractography of fetal association fibers. PLoS ONE, 10, e0119536.Google Scholar
Monson, B. B., Eaton-Rosen, Z., Kapur, K., Liebenthal, E., Brownell, A., Smyser, C. D., Rogers, C. E., Inder, T. E., Warfield, S. K., & Neil, J. J. (2018). Differential rates of perinatal maturation of human primary and nonprimary auditory cortex. eNeuro, 5. doi: 10.1523/ENEURO.0380-17.2017 eN-NWR-0380-17 [pii]Google Scholar
Mota, B., & Herculano-Houzel, S. (2015). Brain Structure. Cortical folding scales universally with surface area and thickness, not number of neurons. Science, 349, 7477.Google Scholar
Mukherjee, P., Miller, J. H., Shimony, J. S., Conturo, T. E., Lee, B. C., Almli, C. R., & McKinstry, R. C. (2001). Normal brain maturation during childhood: Developmental trends characterized with diffusion-tensor MR imaging. Radiology, 221, 349358.Google Scholar
Neil, J. J., Miller, J., Mukherjee, P., & Huppi, P. S. (2002). Diffusion tensor imaging of normal and injured developing human brain – A technical review. NMR in Biomedicine, 15, 543552.Google Scholar
Neil, J. J., Shiran, S. I., McKinstry, R. C., Schefft, G. L., Snyder, A. Z., Almli, C. R., Akbudak, E., Aronovitz, J. A., Miller, J. P., Lee, B. C., & Conturo, T. E. (1998). Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology, 209, 5766.Google Scholar
Ng, W. P., Cartel, N., Roder, J., Roach, A., & Lozano, A. (1996). Human central nervous system myelin inhibits neurite outgrowth. Brain Research, 720, 1724.Google Scholar
Nossin-Manor, R., Card, D., Morris, D., Noormohamed, S., Shroff, M. M., Whyte, H. E., Taylor, M. J., & Sled, J. G. (2013). Quantitative MRI in the very preterm brain: Assessing tissue organization and myelination using magnetization transfer, diffusion tensor and T(1) imaging. Neuroimage, 64, 505516.Google Scholar
Nossin-Manor, R., Card, D., Raybaud, C., Taylor, M. J., & Sled, J. G. (2015). Cerebral maturation in the early preterm period-A magnetization transfer and diffusion tensor imaging study using voxel-based analysis. Neuroimage, 112, 3042.Google Scholar
O’Muircheartaigh, J., Dean, D. C., 3rd, Ginestet, C. E., Walker, L., Waskiewicz, N., Lehman, K., Dirks, H., Piryatinsky, I., & Deoni, S. C. (2014). White matter development and early cognition in babies and toddlers. Human Brain Mapping, 35, 44754487.Google Scholar
Ouyang, M., Dubois, J., Yu, Q., Mukherjee, P., & Huang, H. (2019). Delineation of early brain development from fetuses to infants with diffusion MRI and beyond. Neuroimage, 185, 836850.CrossRefGoogle ScholarPubMed
Ouyang, M., Kang, H., Detre, J. A., Roberts, T. P. L., & Huang, H. (2017a). Short-range connections in the developmental connectome during typical and atypical brain maturation. Neuroscience & Biobehavioral Reviews, 83, 109122.Google Scholar
Ouyang, M., Liu, P., Jeon, T., Chalak, L., Heyne, R., Rollins, N. K., Licht, D. J., Detre, J. A., Roberts, T. P., Lu, H., & Huang, H. (2017b). Heterogeneous increases of regional cerebral blood flow during preterm brain development: Preliminary assessment with pseudo-continuous arterial spin labeled perfusion MRI. Neuroimage, 147, 233242.Google Scholar
Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Jernigan, T. L., Prom-Wormley, E., Neale, M., Jacobson, K., Lyons, M. J., Grant, M. D., Franz, C. E., Xian, H., Tsuang, M., Fischl, B., Seidman, L., Dale, A., & Kremen, W. S. (2009). Distinct genetic influences on cortical surface area and cortical thickness. Cerebral Cortex, 19, 27282735.Google Scholar
Partridge, S. C., Mukherjee, P., Henry, R. G., Miller, S. P., Berman, J. I., Jin, H., Lu, Y., Glenn, O. A., Ferriero, D. M., Barkovich, A. J., & Vigneron, D. B. (2004). Diffusion tensor imaging: Serial quantitation of white matter tract maturity in premature newborns. Neuroimage, 22, 13021314.Google Scholar
Perrot, M., Riviere, D., & Mangin, J. F. (2011). Cortical sulci recognition and spatial normalization. Medical Image Analysis, 15, 529550.Google Scholar
Petanjek, Z., Judas, M., Simic, G., Rasin, M. R., Uylings, H. B., Rakic, P., & Kostovic, I. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences (USA), 108, 1328113286.Google Scholar
Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 7389.Google Scholar
Poduslo, S. E., & Jang, Y. (1984). Myelin development in infant brain. Neurochemical Research, 9, 16151626.Google Scholar
Poh, J. S., Li, Y., Ratnarajah, N., Fortier, M. V., Chong, Y. S., Kwek, K., Saw, S. M., Gluckman, P. D., Meaney, M. J., & Qiu, A. (2015). Developmental synchrony of thalamocortical circuits in the neonatal brain. Neuroimage, 116, 168176.Google Scholar
Pontabry, J., Rousseau, F., Oubel, E., Studholme, C., Koob, M., & Dietemann, J. L. (2013). Probabilistic tractography using Q-ball imaging and particle filtering: Application to adult and in-utero fetal brain studies. Medical Image Analysis, 17, 297310.Google Scholar
Qiu, A., Fortier, M. V., Bai, J., Zhang, X., Chong, Y. S., Kwek, K., Saw, S. M., Godfrey, K., Gluckman, P. D., & Meaney, M. J. (2013). Morphology and microstructure of subcortical structures at birth: A large-scale Asian neonatal neuroimaging study. Neuroimage, 65, 315323.Google Scholar
Rajagopalan, V., Scott, J., Habas, P. A., Kim, K., Corbett-Detig, J., Rousseau, F., Barkovich, A. J., Glenn, O. A., & Studholme, C. (2011). Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. Journal of Neuroscience, 31, 28782887.Google Scholar
Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241, 170176.Google Scholar
Rakic, P. (2000). Radial unit hypothesis of neocortical expansion. Novartis Foundation Symposia, 228, 3042; discussion 42–52.Google Scholar
Rana, S., Shishegar, R., Quezada, S., Johnston, L., Walker, D. W., & Tolcos, M. (2019). The subplate: A potential driver of cortical folding? Cerebral Cortex, 29, 46974708.Google Scholar
Raznahan, A., Greenstein, D., Lee, N. R., Clasen, L. S., & Giedd, J. N. (2012). Prenatal growth in humans and postnatal brain maturation into late adolescence. Proceedings of the National Academy of Sciences (USA), 109, 1136611371.Google Scholar
Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., Greenstein, D., Clasen, L., Gogtay, N., & Giedd, J. N. (2011). How does your cortex grow? Journal of Neuroscience, 31, 71747177.Google Scholar
Roberts, T. P., Khan, S. Y., Blaskey, L., Dell, J., Levy, S. E., Zarnow, D. M., & Edgar, J. C. (2009). Developmental correlation of diffusion anisotropy with auditory-evoked response. Neuroreport, 20, 15861591.Google Scholar
Ruoss, K., Lovblad, K., Schroth, G., Moessinger, A. C., & Fusch, C. (2001). Brain development (sulci and gyri) as assessed by early postnatal MR imaging in preterm and term newborn infants. Neuropediatrics, 32, 6974.Google Scholar
Salami, M., Itami, C., Tsumoto, T., & Kimura, F. (2003). Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex. Proceedings of the National Academy of Sciences (USA), 100, 61746179.Google Scholar
Salvan, P., Tournier, J. D., Batalle, D., Falconer, S., Chew, A., Kennea, N., Aljabar, P., Dehaene-Lambertz, G., Arichi, T., Edwards, A. D., & Counsell, S. J. (2017). Language ability in preterm children is associated with arcuate fasciculi microstructure at term. Human Brain Mapping, 38, 38363847.Google Scholar
Schneider, J., Kober, T., Bickle Graz, M., Meuli, R., Huppi, P. S., Hagmann, P., & Truttmann, A. C. (2016). Evolution of T1 relaxation, ADC, and fractional anisotropy during early brain maturation: A serial imaging study on preterm infants. AJNR American Journal of Neuroradiology, 37, 155162.Google Scholar
Schwartz, M. L., & Goldman-Rakic, P. S. (1991). Prenatal specification of callosal connections in rhesus monkey. The Journal of Comparative Neurology, 307, 144162.Google Scholar
Shenkin, S. D., Starr, J. M., & Deary, I. J. (2004). Birth weight and cognitive ability in childhood: A systematic review. Psychological Bulletin, 130, 9891013.Google Scholar
Sigaard, R. K., Kjaer, M., & Pakkenberg, B. (2016). Development of the cell population in the brain white matter of young children. Cerebral Cortex, 26, 8995.Google Scholar
Silbereis, J. C., Pochareddy, S., Zhu, Y., Li, M., & Sestan, N. (2016). The cellular and molecular landscapes of the developing human central nervous system. Neuron, 89, 248268.Google Scholar
Skeide, M. A., Brauer, J., & Friederici, A. D. (2016). Brain functional and structural predictors of language performance. Cerebral Cortex, 26, 21272139.Google Scholar
Smyser, T. A., Smyser, C. D., Rogers, C. E., Gillespie, S. K., Inder, T. E., & Neil, J. J. (2016). Cortical gray and adjacent white matter demonstrate synchronous maturation in very preterm infants. Cerebral Cortex, 26, 33703378.Google Scholar
Stikov, N., Campbell, J. S., Stroh, T., Lavelee, M., Frey, S., Novek, J., Nuara, S., Ho, M. K., Bedell, B. J., Dougherty, R. F., Leppert, I. R., Boudreau, M., Narayanan, S., Duval, T., Cohen-Adad, J., Picard, P. A., Gasecka, A., Cote, D., & Pike, G. B. (2015). In vivo histology of the myelin g-ratio with magnetic resonance imaging. Neuroimage, 118, 397405.Google Scholar
Stiles, J., & Jernigan, T. L. (2010). The basics of brain development. Neuropsychology Review, 20, 327348.Google Scholar
Takahashi, E., Folkerth, R. D., Galaburda, A. M., & Grant, P. E. (2012). Emerging cerebral connectivity in the human fetal brain: An MR tractography study. Cerebral Cortex, 22, 455464.Google Scholar
Tallinen, T., Chung, J. Y., Rousseau, F., Girard, N., Lefèvre, J., & Mahadevan, L. (2016). On the growth and form of cortical convolutions. Nature Physics, 12, 588.Google Scholar
Taylor, M. J., Menzies, R., MacMillan, L. J., & Whyte, H. E. (1987). VEPs in normal full-term and premature neonates: Longitudinal versus cross-sectional data. Electroencephalography and Clinical Neurophysiology, 68, 2027.Google Scholar
Tissier, C., Linzarini, A., Allaire-Duquette, G., Mevel, K., Poirel, N., Dollfus, S., Etard, O., Orliac, F., Peyrin, C., Charron, S., Raznahan, A., Houde, O., Borst, G., & Cachia, A. (2018). Sulcal polymorphisms of the IFC and ACC contribute to inhibitory control variability in children and adults. eNeuro, 5. doi: 10.1523/ENEURO.0197-17.2018Google Scholar
Travis, K. E., Curran, M. M., Torres, C., Leonard, M. K., Brown, T. T., Dale, A. M., Elman, J. L., & Halgren, E. (2014). Age-related changes in tissue signal properties within cortical areas important for word understanding in 12- to 19-month-old infants. Cerebral Cortex, 24, 19481955.Google Scholar
van den Heuvel, M. P., Kersbergen, K. J., de Reus, M. A., Keunen, K., Kahn, R. S., Groenendaal, F., de Vries, L. S., & Benders, M. J. (2015). The neonatal connectome during preterm brain development. Cerebral Cortex, 25, 30003013.Google Scholar
van den Heuvel, M. P., Scholtens, L. H., & Kahn, R. S. (2019). Multiscale neuroscience of psychiatric disorders. Biological Psychiatry, 86, 512522.Google Scholar
Van der Knaap, M.S., & Valk, J. (1995a). Myelin and white matter. In Van der Knaap, M. S., & Valk, J. (eds.), Magnetic Resonance of Myelin, Myelination and Myelin Disorders (pp. 117). Berlin: Springer-Verlag.Google Scholar
Van der Knaap, M. S., & Valk, J. (1995b). Myelination and retarded myelination. In Van der Knaap, M. S., & Valk, J. (eds.), Magnetic Resonance of Myelin, Myelination and Myelin Disorders (pp. 3765). Berlin: Springer-Verlag.Google Scholar
Vasung, L., Huang, H., Jovanov-Milosevic, N., Pletikos, M., Mori, S., & Kostovic, I. (2010). Development of axonal pathways in the human fetal fronto-limbic brain: Histochemical characterization and diffusion tensor imaging. Journal of Anatomy, 217, 400417.Google Scholar
Vasung, L., Lepage, C., Rados, M., Pletikos, M., Goldman, J. S., Richiardi, J., Raguz, M., Fischi-Gomez, E., Karama, S., Huppi, P. S., Evans, A. C., & Kostovic, I. (2016). Quantitative and qualitative analysis of transient fetal compartments during prenatal human brain development. Frontiers in Neuroanatomy, 10, 11.Google Scholar
Vasung, L., Raguz, M., Kostovic, I., & Takahashi, E. (2017). Spatiotemporal relationship of brain pathways during human fetal development using high-angular resolution diffusion MR imaging and histology. Frontiers in Neuroscience, 11, 348.Google Scholar
Von Bonin, G. (1950). Essay on the Cerebral Cortex. Springfield, IL: Charles C. Thomas Publisher.Google Scholar
Wagstyl, K., Lepage, C., Bludau, S., Zilles, K., Fletcher, P. C., Amunts, K., & Evans, A. C. (2018). Mapping cortical laminar structure in the 3D BigBrain. Cerebral Cortex, 28, 25512562.Google Scholar
Walhovd, K. B., Fjell, A. M., Brown, T. T., Kuperman, J. M., Chung, Y., Hagler, D. J., Jr., Roddey, J. C., Erhart, M., McCabe, C., Akshoomoff, N., Amaral, D. G., Bloss, C. S., Libiger, O., Schork, N. J., Darst, B. F., Casey, B. J., Chang, L., Ernst, T. M., Frazier, J., Gruen, J. R., Kaufmann, W. E., Murray, S. S., van Zijl, P., Mostofsky, S., & Dale, A. M. (2012). Long-term influence of normal variation in neonatal characteristics on human brain development. Proceedings of the National Academy of Sciences (USA), 109, 2008920094.Google Scholar
Wee, C. Y., Tuan, T. A., Broekman, B. F., Ong, M. Y., Chong, Y. S., Kwek, K., Shek, L. P., Saw, S. M., Gluckman, P. D., Fortier, M. V., Meaney, M. J., & Qiu, A. (2017). Neonatal neural networks predict children behavioral profiles later in life. Human Brain Mapping, 38, 13621373.Google Scholar
Welker, W. (1988). Why does cerebral cortex fissure and fold? Cerebral Cortex, 8B, 3135.Google Scholar
Xu, G., Takahashi, E., Folkerth, R. D., Haynes, R. L., Volpe, J. J., Grant, P. E., & Kinney, H. C. (2014). Radial coherence of diffusion tractography in the cerebral white matter of the human fetus: Neuroanatomic insights. Cerebral Cortex, 24, 579592.Google Scholar
Xydis, V., Astrakas, L., Zikou, A., Pantou, K., Andronikou, S., & Argyropoulou, M. I. (2006). Magnetization transfer ratio in the brain of preterm subjects: Age-related changes during the first 2 years of life. European Radiology, 16, 215220.Google Scholar
Yakovlev, P. I. (1962). Morphological criteria of growth and maturation of the nervous system in man. Research Publications – Association for Research in Nervous and Mental Disease, 39, 346.Google Scholar
Yakovlev, P. I., & Lecours, A. R. (1967). The myelogenetic cycles of regional maturation in the brain. In Minowski, A. (ed.), Regional Development of the Brain in Early Life (pp. 369). Oxford: Blackwell.Google Scholar
Yap, P. T., Fan, Y., Chen, Y., Gilmore, J. H., Lin, W., & Shen, D. (2011). Development trends of white matter connectivity in the first years of life. PLoS ONE, 6, e24678.Google Scholar
Yeatman, J. D., Wandell, B. A., & Mezer, A. A. (2014). Lifespan maturation and degeneration of human brain white matter. Nature Communications, 5, 4932.Google Scholar
Yu, Q., Ouyang, A., Chalak, L., Jeon, T., Chia, J., Mishra, V., Sivarajan, M., Jackson, G., Rollins, N., Liu, S., & Huang, H. (2017). Structural development of human fetal and preterm brain cortical plate based on population-averaged templates. Cerebral Cortex, 26, 43814391.Google Scholar
Zanin, E., Ranjeva, J. P., Confort-Gouny, S., Guye, M., Denis, D., Cozzone, P. J., & Girard, N. (2011). White matter maturation of normal human fetal brain. An in vivo diffusion tensor tractography study. Brain and Behavior, 1, 95108.Google Scholar
Zhao, T., Xu, Y., & He, Y. (2019). Graph theoretical modeling of baby brain networks. Neuroimage, 185, 711727.Google Scholar
Zilles, K., Palomero-Gallagher, N., & Amunts, K. (2013). Development of cortical folding during evolution and ontogeny. Trends in Neurosciences, 36, 275284.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×