Published online by Cambridge University Press: 04 August 2010
The goal of this chapter is to explore possible models by which caldesmon and calponin may alter the force-producing interaction between myosin and actin and how the inhibitory activity of caldesmon and calponin may be controlled. Contraction may be potentially regulated by altering the properties of either myosin or actin. In both cases, one or more of many possible transitions in the cycle of ATP hydrolysis by actomyosin may be affected, including (but not limited to) the binding of myosin to actin, the binding of ATP, Pi, and ADP to actomyosin, and cooperative transitions between the active and inactive forms of the actintropomyosin filament. A detailed account of these transitions is not possible here but may be found elsewhere (Chalovich 1992).
Evidence for actin filament-mediated regulation
Phosphorylation of the 20-kDa myosin light chain (MLC20) by the Ca2+ − and calmodulin-dependent myosin light chain kinase (MLCK) is generally thought to be the primary event initiating smooth muscle contraction (for reviews see Kamm and Stull 1985; Somlyo and Somlyo 1994; and Chapter 6 of this volume). In fact, there is evidence that MLC20 phosphorylation is sufficient to trigger smooth muscle contraction (Itoh et al. 1989). On the other hand, numerous physiological studies have shown that there is no fixed relationship between isometric force and MLC20 phosphorylation. During prolonged contraction MLC20 phosphorylation, crossbridge cycling rates, and intracellular Ca2+ decrease while force is fully maintained by the so-called latch state (Dillon et al. 1981; see also Kamm and Stull 1985 for a review).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.