Published online by Cambridge University Press: 24 November 2009
Polynomially bounded and power-bounded operators have played an important role in the development of this area, and there are a number of interesting results, counterexamples, and open questions about these operators. In particular, we will present Foguel's example [98] of a power-bounded operator and Pisier's example [191] of a polynomially bounded operator that are not similar to contractions.
Recall that an operator T is power-bounded provided that there is a constant M such that ||T n|| ≤ M for all n ≥ 0. Clearly, if T = S-1CS with C a contraction, then T is power-bounded with ||T n|| ≤ ||S-1|| ||S||.
It is fairly easy to see (Exercise 10.1), by using the Jordan form, that a matrix T ∈ Mn is power-bounded if and only if it is similar to a contraction. Sz.-Nagy [229] proved that the same characterization holds when T is a compact operator. This led naturally to the conjecture that an arbitrary operator is similar to a contraction if and only if it is power-bounded. Foguel provided the first example of a power-bounded operator that is not similar to a contraction.
Recall that an operator is polynomially bounded provided there is a constant K such that ||p(T)|| ≤ K||p||∞ for every polynomial p, where the ∞-norm is the supremum norm over the unit disk.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.