Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-gwv8j Total loading time: 0 Render date: 2025-10-04T07:25:05.351Z Has data issue: false hasContentIssue false

16 - Changes in Evaporation and Humidity

Published online by Cambridge University Press:  02 October 2024

Peter Blanken
Affiliation:
University of Colorado Boulder
Get access

Summary

Water shapes the planet and all life upon it. Breaking down traditional disciplinary barriers, this accessible, holistic introduction to the role and importance of water in Earth’s physical and biological environments assumes no prior knowledge. It provides the reader with a clear and coherent explanation of the unique properties of water and how these allow it to affect landscapes and underpin all life on Earth. Contemporary issues surrounding water quality – such as the rise of microplastics and climate change – are highlighted, ensuring readers understand current debates. Giving all of the necessary background and up-to-date references, and including numerous examples and illustrations to explain concepts, worked mathematical calculations, and extensive end-of-chapter questions, this is the ideal introductory textbook for students seeking to understand the inextricable links between water and the environment.

Information

Type
Chapter
Information
Essentials of Water
Water in the Earth's Physical and Biological Environments
, pp. 299 - 323
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Allan, R. P., Willett, K. M., John, V. O. and Trent, T. (2022) ‘Global changes in water vapor 1979–2020’, Journal of Geophysical Research Atmospheres, 127, p. e2022JD036728. doi: 10.1029/2022JD036728.CrossRefGoogle Scholar
Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. (1998) Crop Evapotranspiration – Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. FAO. doi: ISBN 92-5-104219-5.Google Scholar
Allen, R. G., Pruitt, W. O., Wright, J. L. et al. (2006) ‘A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method’, Agricultural Water Management, 81, pp. 122. doi: 10.1016/j.agwat.2005.03.007.CrossRefGoogle Scholar
Antezana-Vera, S. A. and Marenco, R. A. (2019) ‘Intra-annual tree growth responds to micrometeorological variability in the central Amazon’, Biogeosciences and Forestry, 14, pp. 242249. doi: 10.3832/ifor3532-014.CrossRefGoogle Scholar
Anyadike, R. N. C. (1987) ‘The Linacre evaporation formula tested and compared to others in various climates over West Africa’, Agricultural and Forest Meteorology, 39, pp. 111119.CrossRefGoogle Scholar
Asseng, S., Spankuch, D., Hernandez-Ochoa, I. M. and Laporta, J. (2021) ‘The upper temperature thresholds of life’, The Lancet Planetary Health, 5, pp. e378e385. doi: 10.1016/S2542-5196(21)00079-6. Open Access article under CC BY-NC-ND 4.0 license.CrossRefGoogle ScholarPubMed
Barkhordarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C. and Mechoso, C. R. (2019) ‘A recent systematic increase in vapor pressure deficit over tropical South America’, Science Reports, 9, p. 15331. doi: 10.1038/s41598-019-51857-8.CrossRefGoogle ScholarPubMed
Bellis, E. D. (1962) ‘The influence of humidity on wood frog activity’, The American Midland Naturalist, 68, pp. 139148.CrossRefGoogle Scholar
Brutsaert, W. and Parlange, M. B. (1998) ‘Hydrologic cycle explains the evaporation paradox’, Nature, 396, p. 30. doi: 10.1038/23845.CrossRefGoogle Scholar
Burn, D. H. and Hesch, N. M. (2007) ‘Trends in evaporation for the Canadian Prairies’, Journal of Hydrology, 336, pp. 6173. doi: 10.1016/j.jhydrol.2006.12.011.CrossRefGoogle Scholar
Castellaneta, M., Rita, A., Camarero, J. J., Colangelo, M. and Ripullone, F. (2022) ‘Declines in canopy greenness and tree growth are caused by combined climate extremes during drought-induced dieback’, Science of the Total Environment, 813, p. 152666. doi: 10.1016/j.scitotenv.2021.152666.CrossRefGoogle ScholarPubMed
Chattopadhyay, N. and Hulme, M. (1997) ‘Evaporation and potential evapotranspiration in India under conditions of recent and future climate change’, Agricultural and Forest Meteorology, 87, pp. 5573.CrossRefGoogle Scholar
Christidis, N., Jones, G. S. and Stott, P. A. (2015) ‘Dramatically increasing chance of extremely hot summers since the 2003 European heatwave’, Nature Climate Change, 5, pp. 37. doi: 10.1038/NCLIMATE2468.CrossRefGoogle Scholar
Douville, H., Rhagavan, K., Renwick, J. et al. (2021) ‘Water cycle changes’, in Masson-Delmotte, V. et al. (eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp. 10551210. doi: 10.1017/9781009157896.010.Google Scholar
Ficklin, D. L. and Novick, K. A. (2017) ‘Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere’, Journal of Geophysical Research Atmospheres, 122, pp. 20612079. doi: 10.1002/2016JD025855.CrossRefGoogle Scholar
Forister, M. L., Pelton, E. M. and Black, S. H. (2019) ‘Declines in insect abundance and diversity: We know enough to act now’, Conservation Science and Practice, 1, p. e80. doi: 10.1111/csp2.80.CrossRefGoogle Scholar
Forrest, J. R. K. (2016) ‘Complex responses of insect phenology to climate change’, Current Opinion in Insect Science, 17, pp. 4954. doi: 10.1016/j.cois.2016.07.002.CrossRefGoogle Scholar
Frishkoff, L. O., Hadly, E. A. and Daily, G. C. (2015) ‘Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles’, Global Change Biology, 21, pp. 39013916. doi: 10.111/gcb.13016.CrossRefGoogle ScholarPubMed
Fu, G., Charles, S. P. and Yu, J. (2009) ‘A critical overview of pan evaporation trends over the last 50 years’, Climate Change, 97, pp. 193214. doi: 10.1007/s10584-009-9579-1.CrossRefGoogle Scholar
García-Herrera, R., Díaz, J., Trigo, R. M., Luterbacher, J. and Fischer, E. M. (2010) ‘A review of the European summer heat wave of 2003’, Critical Reviews in Environmental Science and Technology, 40, pp. 267306. doi: 10.1080/10643380802238137.CrossRefGoogle Scholar
Greenberg, D. A. and Palen, W. J. (2021) ‘Hydrothermal physiology and climate vulnerability in amphibians’, Proceedings of the Royal Society of London, Series B, 288. doi: 0.1098/rspb.2020.2273.Google ScholarPubMed
Grossiord, C., Buckley, T. N., Cernusak, L. A. et al. (2020) ‘Plant responses to rising vapor pressure deficit’, New Phytologist, 226, pp. 15501566. doi: 10.1111/nph.16485.CrossRefGoogle ScholarPubMed
Habeeb, D., Vargo, J. and Stone, B. (2015) ‘Rising heat wave trends in large US cities’, Natural Hazards, 76, pp. 16511665. doi: 10.1007/s11069-014-1563-z.CrossRefGoogle Scholar
Hallmann, C. A., Sorg, M., Jongejans, E. et al. (2017) ‘More than 75 percent decline over 27 years in total flying insect biomass in protected areas’, PLoS ONE, 12, e0185809. doi: 10.1371/journal.pone.0185809.CrossRefGoogle ScholarPubMed
Halsch, C. A., Shapiro, A. M., Fordyce, J. A. et al. (2021) ‘Insects and recent climate change’, Proceedings of the National Academy of Sciences USA, 118, pp. 19. doi: 10.1073/pnas.2002543117.CrossRefGoogle ScholarPubMed
Hogg, E. H., Black, T. A., den Hartog, G. et al. (1997) ‘A comparison of sap flow and eddy fluxes of water vapor from a boreal deciduous forest’, Journal of Geophysical Research Atmospheres, 102, pp. 2892928937. doi: 10.1029/96JD03881.CrossRefGoogle Scholar
Huntington, T. G. (2006) ‘Evidence for intensification of the global water cycle: Review and synthesis’, Journal of Hydrology, 319, pp. 8395. doi: 10.1016/j.jhydrol.2005.07.003.CrossRefGoogle Scholar
Irmak, S., Kabenge, I., Skaggs, K. E. and Mutiibwa, D. (2012) ‘Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yr period in the Platte River Basin, central Nebraska – USA’, Journal of Hydrology, 420–421, pp. 228244. doi: 10.1016/j.jhydrol.2011.12.006.CrossRefGoogle Scholar
Kay, A. L., Bell, V. A., Blyth, E. M. et al. (2013) ‘A hydrological perspective on evaporation: historical trends and future projections in Britain’, Journal of Water and Climate Change, 4, pp. 193208. doi: 10.2166/wcc.2013.014.CrossRefGoogle Scholar
Kent, S. T., McClure, L. A., Zaitchik, B. F., Smith, T. T. and Gohlke, J. M. (2014) ‘Heat waves and health outcomes in Alabama (USA): The importance of heat wave definition’, Environmental Health Perspectives, 122, pp. 151158.CrossRefGoogle ScholarPubMed
Lewis, N. and Pfenning, D. W. (2021) ‘Phenotypic plasticity’, in Futuma, D. J. (ed.) Evolutionary Biology. Oxford University Press. doi: 10.1093/obo/9780199941728-0093.Google Scholar
Li, M., Yao, J., Guan, J. and Zheng, J. (2021) ‘Observed changes in vapor pressure deficit suggest a systematic drying of the atmosphere in Xinjiang of China’, Atmospheric Research, 248, p. 105199. doi: 10.1016/j.atmosres.2020.105199.CrossRefGoogle Scholar
Lin, H., Ruping, M. and Vitart, F. (2022) ‘The 2021 western North American heatwave and its subseasonal predictions’, Geophysical Research Letters, 49, p. e2021GL097036. doi: 10.1029/2021GL097036.CrossRefGoogle Scholar
Linacre, E. T. (1977) ‘A simple formula for estimating evaporation rates in various climates, using temperature data alone’, Agricultural Meteorology, 18, pp. 409424.CrossRefGoogle Scholar
Liu, B., Xu, M., Henderson, M. and Gong, W. (2004) ‘A spatial analysis of pan evaporation trends in China, 1955–2000’, Journal of Geophysical Research, 109, p. D15102. doi: 10.1029/2004JD004511.CrossRefGoogle Scholar
López, J., Way, D. A. and Sadok, W. (2021) ‘Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity’, Global Biogeochemical Cycles, 27, pp. 17041720. doi: 10.1111/gcb.15548.Google ScholarPubMed
Massmann, A., Gentine, P. and Lin, C. (2019) ‘When does vapor pressure deficit drive or reduce evapotranspiration?’, Journal of Advances in Modeling Earth Systems, 11, pp. 33053320. doi: 10.1029/2019MS001790.CrossRefGoogle ScholarPubMed
McVicar, T. R., Roderick, M. L., Donohue, R. J. et al. (2012) ‘Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation’, Journal of Hydrology, 416–417, pp. 182205. doi: 10.1016/j.jhydrol.2011.10.024.CrossRefGoogle Scholar
Milly, P. C. D. and Dunne, K. A. (2001) ‘Trends in evaporation and surface cooling in the Mississippi River basin’, Geophysical Research Letters, 28, pp. 12191222.CrossRefGoogle Scholar
Noer, N. K., Oersted, M., Schiffer, M. et al. (2022) ‘Into the wild – A field study on the evolutionary and ecological importance of thermal plasticity in ectotherms across temperate and tropical regions’, Philosophical Transactions of the Royal Society of London, Series B, 377, p. 20210004. doi: 10.1098/rstb.2021.0004.CrossRefGoogle Scholar
Novick, K. A., Ficklin, D. L., Stoy, P. C. et al. (2016) ‘The increasing importance of atmospheric demand for ecosystem water and carbon fluxes’, Nature Climate Change, 6, pp. 10231027. doi: 10.1038/nclimate3114.CrossRefGoogle Scholar
Penman, H. L. (1948) ‘Natural evaporation from open water, bare soil and grass’, Proceedings of the Royal Society of London, Series A, 193, pp. 120145.Google Scholar
Peterson, T. C., Golubev, V. S. and Groisman, P. Y. (1995) ‘Evaporation losing its strength’, Nature, 377, pp. 687688.CrossRefGoogle Scholar
Restaino, C. M., Peterson, D. L. and Littell, J. (2016) ‘Increased water deficit decreases Douglas fir growth throughout western US forests’, Proceedings of the National Academy of Sciences USA, 113, pp. 95579562. doi: 10.1073/pnas.1602384113.CrossRefGoogle ScholarPubMed
Riddell, E. A. and Sears, M. W. (2015) ‘Geographic variation of resistance to water loss within two species of lungless salamanders – Implications for activity’, Ecosphere, 6, pp. 116. doi: 10.1890/ES14-00360.1.CrossRefGoogle Scholar
Robine, J., Cheung, S. L. K., Le Roy, S. et al. (2008) ‘Death toll exceeded 70,000 in Europe during the summer of 2003’, Comptes Rendus Biologies, 331, pp. 171178. doi: 10.1016/j.crvi.2007.12.001.CrossRefGoogle ScholarPubMed
Roderick, M. L. and Farquhar, G. D. (2002) ‘The cause of decreased pan evaporation over the past 50 years’, Science, 298, pp. 14101412. doi: 10.1126/science.1075390-a.CrossRefGoogle ScholarPubMed
Roderick, M. L., Rotstayn, L. D., Farquhar, G. D. and Hobbins, M. T. (2007) ‘On the attribution of changing pan evaporation’, Geophysical Research Letters, 34, pp. 16. doi: 10.1029/2007GL031166.CrossRefGoogle Scholar
Romanello, M., McGushin, A., Di Napoli, C. et al. (2021) ‘Review: The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future’, 398, pp. 16191662. doi: 10.1016/S0140-6736(21)01787-6.Google ScholarPubMed
Rotstayn, L. D., Roderick, M. L. and Farquhar, G. D. (2006) ‘A simple pan-evaporation model for analysis of climate simulations: Evaluation over Australia’, Geophysical Research Letters, 33, p. L17715. doi: 10.1029/2006GL027114.CrossRefGoogle Scholar
Rousi, E., Kornhuber, K., Beobide-Arsuaga, G., Luo, F. and Coumou, D. (2022) ‘Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia’, Nature Communications, 13, p. 3851. doi: 10.1038/s41467-022-31432-y.CrossRefGoogle ScholarPubMed
Seagar, R., Hooks, A., Park Williams, A. et al. (2015) ‘Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity’, Journal of Applied Meteorology and Climatology, 54, pp. 11211141. doi: 10.1175/JAMC-D-14-0321.1.CrossRefGoogle Scholar
Shen, J., Yang, H., Li, S. et al. (2022) ‘Revisiting the pan evaporation trend in China during 1988–2017’, Journal of Geophysical Research Atmospheres, 127, p. e2022JD036489. doi: 10.1029/2022JD036489.CrossRefGoogle Scholar
Sherwood, S. C. and Huber, M. (2010) ‘An adaptability limit to climate change due to heat stress’, Proceedings of the National Academy of Sciences USA, 107, pp. 95529555. doi: 10.1073/pnas.0913352107.CrossRefGoogle ScholarPubMed
Smith, T. T., Zaitchik, B. F. and Gohlke, J. M. (2013) ‘Heat waves in the United States: Definitions, patterns and trends’, Climatic Change, 118, pp. 811825. doi: 10.1007/s10584-012-0659-2.CrossRefGoogle ScholarPubMed
Stephens, C. M., McVicar, T. R., Johnson, F. M. and Marshall, L. A. (2018) ‘Revisiting pan evaporation trends in Australia a decade on’, Geophysical Research Letters, 45, pp. 1116411172. doi: 10.1029/2018GL079332.CrossRefGoogle Scholar
Stull, R. (2011) ‘Wet-bulb temperature from relative humidity and air temperature’, Journal of Applied Meteorology and Climatology, 50, pp. 22672269. doi: 10.1175/JAMC-D-11-0143.1.CrossRefGoogle Scholar
Thompson, V., Kennedy-Asser, A. T., Vosper, E. et al. (2022) ‘The 2021 western North America heat wave among the most extreme events ever recorded globally’, Science Advances, 8, pp. 111. doi: 10.1126/sciadv.abm6860.CrossRefGoogle ScholarPubMed
Vicente-Serrano, S. M., Nieto, R., Gimeno, L. et al. (2018) ‘Recent changes of relative humidity: regional connections with land and ocean processes’, Earth System Dynamics, 9, pp. 915937. doi: 10.5194/esd-9-915-2018.CrossRefGoogle Scholar
Vincent, L. A., Wijngaarden, W. A. and Hopkinson, R. (2007) ‘Trends in relative humidity in Canada from 1953–2003’, Journal of Climate, 20, pp. 51005113. doi: https://doi.org/10.1175/JCLI4293.1.CrossRefGoogle Scholar
Walter, M., Wilks, D. S., Parlange, J.-Y. and Schneider, R. L. (2004) ‘Increasing evapotranspiration from the conterminous United States’, Journal of Hydrometeorology, 5, pp. 405408. doi: 10.1175/1525-7541(2004)005<0405:IEFTCU>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Weaver, A., Edwards, H., McIntyre, T. et al. (2022) ‘Cutaneous evaporative water loss in lizards is variable across body regions and plastic in response to humidity’, Herpetologica, 78, pp. 169183. doi: 10.1655/Herpetologica-D-21-00030.1.CrossRefGoogle Scholar
Wild, M. (2009) ‘Global dimming and brightening: A review’, Journal of Geophysical Research, 114, pp. 131. doi: 10.1029/2008JD011470.CrossRefGoogle Scholar
Xu, Z., FitzGerald, G., Guo, Y., Jalaludin, B. and Tong, S. (2016) ‘Impact of heatwave on mortality under different heatwave definitions: A systematic review and meta-analysis’, Environment International, 89–90, pp. 193203. doi: 10.1016/j.envint.2016.02.007.CrossRefGoogle ScholarPubMed
Zhao, G., Li, Y. and Gao, H. (2022) ‘Evaporative water loss of 1.42 million global lakes’, Nature Communications, 13, p. 3686. doi: 10.1038/s41467-022-31125-6.CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×