Published online by Cambridge University Press: 05 June 2012
Introduction
The preceding chapters considered the steady-state behavior of common fluid power elements and systems. In reality, fluid power systems handle significant moving masses, and the combination of this with fluid compressibility results in system dynamics that usually cannot be neglected. In addition, individual components such as PRVs require a finite time to accommodate flow-rate changes. This also applies, for example, to a servovalve that again requires a finite time to change its spool position in response to a change in applied current. The combination of these issues means that the design of both open-loop and closed-loop control systems must take into account these dynamic issues. In particular, a closed-loop control system will almost certainly become unstable as system gains are increased because of such dynamic effects. Instability can lead to disastrous consequences if severe pressure oscillations occur. Instability in axial piston motor speed control systems, for example, can result in severe repetitive lifting and impact of the pistons on the swash plate.
Consider the design of a servoactuator that forms one of four to be used to provide the “road” input to the wheels of a vehicle sitting on a rig commonly called a “four-poster.” Figure 5.1 shows one of the servoactuators and a block diagram of the position control system.
Determining the dynamic performance of the position control system only is relatively straightforward once the important dynamic features have been identified.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.