Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-zzcdp Total loading time: 0.338 Render date: 2021-12-03T20:25:09.074Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

2 - Survey of modeling, analysis, and control of hybrid systems

from Part I - Theory

Published online by Cambridge University Press:  21 February 2011

Jan Lunze
Affiliation:
Ruhr-Universität, Bochum, Germany
Françoise Lamnabhi-Lagarrigue
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Get access

Summary

An overview of various modeling frameworks for hybrid systems is given followed by a comparison of the modeling power and the model complexity, which can serve as a guideline for choosing the right model for a given analysis or control problem with hybrid dynamics. Then, the main analysis and design tasks for hybrid systems are surveyed together with the methods for their solution, which will be discussed in more detail in subsequent chapters.

Models for hybrid systems

Overview

As models are the ultimate tools for obtaining and dealing with knowledge, not only in engineering, but also in philosophy, biology, sociology, and economics, a search has been undertaken for appropriate mathematical models for hybrid systems. This section gives an overview of the modeling formalisms that have been elaborated in hybrid systems theory in the past.

Structure of hybrid systems Many different models have been proposed in literature, as will be seen in following chapters. These models can be distinguished with respect to the phenomena that they are able to represent in an explicit form. Consequently, these models have different fields of applications. The main idea of these models is described by the block diagram shown in Fig. 2.1, which is often used in literature as a starting point of hybrid systems modeling and analysis, although not all models use this structure in a direct way.

Type
Chapter
Information
Handbook of Hybrid Systems Control
Theory, Tools, Applications
, pp. 31 - 56
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
12
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×