Published online by Cambridge University Press: 05 June 2012
We just learned that every convex polyhedron has a general net, and we saw an example in Figure 7.10 of a nonconvex polyhedron that does not have a net (cutting along edges only). This naturally raises the question: Does every nonconvex polyhedron have a general net? This is yet another unsolved problem. As with Dürer's problem, no counterexample is known, but there is not much evidence that the answer to the general unfolding question is yes. If every polyhedron does have a general net, it would certainly make a stunning theorem!
Because this problem seems difficult, researchers have focused on a special class of nonconvex polyhedra known as orthogonal polyhedra, where “orthogonal” means “at right angles.”
Orthogonal Polyhedra
You can think of orthogonal polyhedra as those you could build out of Lego blocks. An orthogonal polyhedron is a polyhedron where each edge is parallel to one of the axes of a standard right-angled xyz-coordinate system. If all edges are parallel to an axis, then all faces are parallel to a coordinate plane: either xy (horizontal) or xz (vertical, front or back) or yz (vertical, side, left or right). Any pair of faces of an orthogonal polyhedron that share an edge either lie in the same plane (they are coplanar) or meet at right angles to each other, that is, orthogonally.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.