Skip to main content Accessibility help
Hostname: page-component-56f9d74cfd-h5t46 Total loading time: 0.82 Render date: 2022-06-27T16:00:48.563Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

9 - Distributed population codes in sensory and memory representations of the neocortex

Published online by Cambridge University Press:  14 August 2009

Christian Holscher
University of Ulster
Matthias Munk
Max-Planck-Institut für biologische Kybernetik, Tübingen
Get access


Distributed representations are the inevitable consequence of devoting large neuronal circuits to a detailed and adaptive analysis of complex information. The neocortical sheet with its extensive cortico-cortical connectivity is characterized by ubiquitous massive divergence and convergence, sparseness and reciprocity of the vast majority of connections. It therefore appears as an optimized dynamical structure for detailed and adaptive analysis on the one hand and the operation of multiple parallel neuronal processes required for optimizing speed and accuracy of information processing on the other hand. The established concepts of information coding in the cortex are based on tuning functions of many individual neurons thought to express their stimulus specificity in an independent way. A second level of organization is usually attributed to the spatial relations of neurons in topographically organized representations like those in sensory areas and the convergence of neuronal signals carrying information from different modalities into “higher” areas which are more involved in executive functions or the formation of complex memory representations. It has been argued that the collection of neuronal signals from consecutive recording sessions can be used to reconstruct population codes as it has been done with the “population vector” analysis in motor, sensory, and memory areas of the cortex. It is clear that the success of this method relies on fixed neuronal response properties which have been consolidated in cortical circuits over long periods of time such that the spatial pattern and the mixture of neurons contributing to the population response is reasonably stable.

Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abeles, M. (1982). Local Cortical Circuits: An Electrophysiological Study. Heidelberg, Germany: Springer-Verlag.CrossRefGoogle Scholar
Abeles, M. (1991). Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Abeles, M., Prut, Y., Bergman, H., and Vaadia, E. (1994). Synchronization in neuronal transmission and its importance for information processing. Prog Brain Res 102:395–404.CrossRefGoogle ScholarPubMed
Aggelopoulos, N. C., Franco, L., and Rolls, E. T. (2005). Object perception in natural scenes: encoding by inferior temporal cortex simultaneously recorded neurons. J Neurophysiol 93:1342–1357.CrossRefGoogle ScholarPubMed
Alonso, J. M., Usrey, W. M., and Reid, R. C. (1996). Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383:815–819.CrossRefGoogle ScholarPubMed
Arieli, A., Sterkin, A., Grinvald, A., and Aertsen, A. (1996). Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868–1871.CrossRefGoogle ScholarPubMed
Averbeck, B. B., Latham, P. E., and Pouget, A. (2006). Neural correlations, population coding and computation. Nat Rev Neurosci 7:358–366.CrossRefGoogle ScholarPubMed
Baker, S. N. and Lemon, R. N. (2000). Precise spatiotemporal repeating patterns in monkey primary and supplementary motor areas occur at chance levels. J Neurophysiol 84:1770–1780.CrossRefGoogle ScholarPubMed
Beggs, J. M. and Plenz, D. (2003). Neuronal avalanches in neocortical circuits. J Neurosci 23:11 167–11 177.CrossRefGoogle ScholarPubMed
Beggs, J. M. and Plenz, D. (2004). Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J Neurosci 24:5216–5229.CrossRefGoogle ScholarPubMed
Berger, H. (1929). Über das Elektrencephalogramm des Menschen. Arch Psychiat Nervenkr 87:527–570.CrossRefGoogle Scholar
Braitenberg, V. and Schüz, A. (1998). Cortex: Statistics and Geometry of Neuronal Connections. Heidelberg, Germany: Springer-Verlag.CrossRefGoogle Scholar
Braun, H. A., Wissing, H., Schafer, K., and Hirsch, M. C. (1994). Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature 367:270–273.CrossRefGoogle ScholarPubMed
Bullier, J., Hupe, J. M., James, A. C., and Girard, P. (2001). The role of feedback connections in shaping the responses of visual cortical neurons. Prog Brain Res 134:193–204.CrossRefGoogle ScholarPubMed
Buschman, T. J. and Miller, E. K. (2007). Top–down versus bottom–up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862.CrossRefGoogle ScholarPubMed
Buzsáki, G. and Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science 304:1926–1929.CrossRefGoogle ScholarPubMed
Calvert, G. A. (2001). Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cereb Cortex 11:1110–1123.CrossRefGoogle ScholarPubMed
Carney, L. H. (1999). Temporal response properties of neurons in the auditory pathway. Curr Opin Neurobiol 9:442–446.CrossRefGoogle ScholarPubMed
Chase, S. M. and Young, E. D. (2007). First-spike latency information in single neurons increases when referenced to population onset. Proc Natl Acad Sci USA 104:5175–5180.CrossRefGoogle ScholarPubMed
Cleland, B. G., Dubin, M. W., and Levick, W. R. (1971). Simultaneous recording of input and output of lateral geniculate neurones. Nat New Biol 231:191–192.CrossRefGoogle ScholarPubMed
Constantinidis, C. and Steinmetz, M. A. (2001). Neuronal responses in area 7a to multiple-stimulus displays. I. Neurons encode the location of the salient stimulus. Cereb Cortex 11:581–591.CrossRefGoogle Scholar
Constantinidis, C., Franowicz, M. N., and Goldman-Rakic, P. S. (2001). Coding specificity in cortical microcircuits: a multiple-electrode analysis of primate prefrontal cortex. J Neurosci 21:3646–3655.CrossRefGoogle ScholarPubMed
Constantinidis, C., Williams, G. V., and Goldman-Rakic, P. S. (2002). A role for inhibition in shaping the temporal flow of information in prefrontal cortex. Nat Neurosci 5:175–180.CrossRefGoogle ScholarPubMed
deCharms, R. C. (1998). Information coding in the cortex by independent or coordinated populations. Proc Natl Acad Sci USA 95:15 166–15 168.CrossRefGoogle ScholarPubMed
Delage, Y. (1919). Le Rêve: Étude psychologique, philosophique et littéraire. Paris: Presses Universitaires de France.Google Scholar
Diesmann, M., Gewaltig, M. O., and Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature 402:529–533.CrossRefGoogle ScholarPubMed
Douglas, R. J. and Martin, K. A. (2004). Neuronal circuits of the neocortex. Annu Rev Neurosci 27:419–451.CrossRefGoogle ScholarPubMed
Douglas, R. J. and Martin, K. A. (2007). Recurrent neuronal circuits in the neocortex. Curr Biol 17:R496–R500.CrossRefGoogle ScholarPubMed
Eckhorn, R., Bauer, R., Jordan, W., et al. (1988). Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybernet 60:121–130.CrossRefGoogle ScholarPubMed
Engel, A. K., Konig, P., Kreiter, A. K., and Singer, W. (1991a). Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 252:1177–1179.CrossRefGoogle ScholarPubMed
Engel, A. K., Konig, P., and Singer, W. (1991b). Direct physiological evidence for scene segmentation by temporal coding. Proc Natl Acad Sci USA 88:9136–9140.CrossRefGoogle ScholarPubMed
Engel, A. K., Konig, P., Kreiter, A. K., Schillen, T. B., and Singer, W. (1992). Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci 15:218–226.CrossRefGoogle Scholar
Fuster, J. M. and Alexander, G. E. (1970). Delayed response deficit by cryogenic depression of frontal cortex. Brain Res 20:85–90.CrossRefGoogle ScholarPubMed
Fuster, J. M., Bauer, R. H. and Jervey, J. P. (1981). Effects of cooling inferotemporal cortex on performance of visual memory tasks. Exp Neurol 71:398–409.CrossRefGoogle ScholarPubMed
Gallant, J. L., Connor, C. E., and Van, E. (1998). Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing. Neuroreport 9:85–90.CrossRefGoogle ScholarPubMed
Gawne, T. J., Kjaer, T. W., and Richmond, B. J. (1996). Latency: another potential code for feature binding in striate cortex. J Neurophysiol 76:1356–1360.CrossRefGoogle ScholarPubMed
Georgopoulos, A. P., Kettner, R. E., and Schwartz, A. B. (1988). Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J Neurosci 8:2928–2937.CrossRefGoogle ScholarPubMed
Ghazanfar, A. A. and Schroeder, C. E. (2006). Is neocortex essentially multisensory?Trends Cogn Sci 10:278–285.CrossRefGoogle ScholarPubMed
Girard, P. and Bullier, J. (1989). Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey. J Neurophysiol 62:1287–1302.CrossRefGoogle ScholarPubMed
Girard, P., Salin, P. A., and Bullier, J. (1991a). Visual activity in areas V3a and V3 during reversible inactivation of area V1 in the macaque monkey. J Neurophysiol 66:1493–1503.CrossRefGoogle ScholarPubMed
Girard, P., Salin, P. A., and Bullier, J. (1991b). Visual activity in macaque area V4 depends on area 17 input. Neuroreport 2:81–84.CrossRefGoogle ScholarPubMed
Girard, P., Salin, P. A., and Bullier, J. (1992). Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1. J Neurophysiol 67:1437–1446.CrossRefGoogle ScholarPubMed
Gochin, P. M., Miller, E. K., Gross, C. G., and Gerstein, G. L. (1991). Functional interactions among neurons in inferior temporal cortex of the awake macaque. Exp Brain Res 84:505–516.CrossRefGoogle ScholarPubMed
Golland, Y., Bentin, S., Gelbard, H., et al. (2006). Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation. Cereb Cortex 17:766–777.CrossRefGoogle ScholarPubMed
Goodale, M. A. and Westwood, D. A. (2004). An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Curr Opin Neurobiol 14:203–211.CrossRefGoogle ScholarPubMed
Goodale, M. A., Pelisson, D., and Prablanc, C. (1986). Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320:748–750.CrossRefGoogle ScholarPubMed
Gray, C. M. and Singer, W. (1987). Stimulus-specific neuronal oscillations in the cat visual cortex: a cortical functional unit. Soc Neurosci Abstr 13:404.3.Google Scholar
Gray, C. M. and Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698–1702.CrossRefGoogle ScholarPubMed
Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G., and Buzsáki, G. (2003). Organization of cell assemblies in the hippocampus. Nature 424:552–556.CrossRefGoogle ScholarPubMed
Hata, Y., Tsumoto, T., Sato, H., Hagihara, K., and Tamura, H. (1993). Development of local horizontal interactions in cat visual cortex studied by cross-correlation analysis. J Neurophysiol 69:40–56.CrossRefGoogle ScholarPubMed
Haxby, J. V., Hoffman, E. A., and Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends Cogn Sci 4:223–233.CrossRefGoogle ScholarPubMed
Haxby, J. V., Gobbini, M. I., Furey, M. L., et al. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430.CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949). The Organization of Behavior. New York: John Wiley.Google Scholar
Herrmann, C. S., Munk, M. H., and Engel, A. K. (2004). Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn Sci 8:347–355.CrossRefGoogle ScholarPubMed
Hirabayashi, T. and Miyashita, Y. (2005). Dynamically modulated spike correlation in monkey inferior temporal cortex depending on the feature configuration within a whole object. J Neurosci 25:10 299–10 307.CrossRefGoogle Scholar
Hochstein, S. and Ahissar, M. (2002). View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36:791–804.CrossRefGoogle ScholarPubMed
Houzel, J. C., Milleret, C., and Innocenti, G. (1994). Morphology of callosal axons interconnecting areas 17 and 18 of the cat. Eur J Neurosci 6:898–917.CrossRefGoogle ScholarPubMed
Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol 160:106–154.CrossRefGoogle ScholarPubMed
Hupe, J. M., James, A. C., Payne, B. R., et al. (1998). Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394:784–787.Google ScholarPubMed
Ikegaya, Y., Aaron, G., Cossart, R., et al. (2004). Synfire chains and cortical songs: temporal modules of cortical activity. Science 304:559–564.CrossRefGoogle ScholarPubMed
Innocenti, G. M., Lehmann, P., and Houzel, J. C. (1994). Computational structure of visual callosal axons. Eur J Neurosci 6:918–935.CrossRefGoogle ScholarPubMed
Kamitani, Y. and Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nat Neurosci 8:679–685.CrossRefGoogle ScholarPubMed
Kamitani, Y. and Tong, F. (2006). Decoding seen and attended motion directions from activity in the human visual cortex. Curr Biol 16:1096–1102.CrossRefGoogle ScholarPubMed
Klimesch, W., Doppelmayr, M., Schimke, H., and Pachinger, T. (1996). Alpha frequency, reaction time, and the speed of processing information. J Clin Neurophysiol 13:511–518.CrossRefGoogle ScholarPubMed
Konishi, M. (2003). Coding of auditory space. Annu Rev Neurosci 26:31–55.CrossRefGoogle ScholarPubMed
Krahe, R. and Gabbiani, F. (2004). Burst firing in sensory systems. Nat Rev Neurosci 5:13–23.CrossRefGoogle ScholarPubMed
Kreiter, A. K. and Singer, W. (1996). Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey. J Neurosci 16:2381–2396.CrossRefGoogle ScholarPubMed
Kruse, W., Dannenberg, S., Kleiser, R., and Hoffmann, K. P. (2002). Temporal relation of population activity in visual areas MT/MST and in primary motor cortex during visually guided tracking movements. Cereb Cortex 12:466–476.CrossRefGoogle ScholarPubMed
Lau, P. M. and Bi, G. Q. (2005). Synaptic mechanisms of persistent reverberatory activity in neuronal networks. Proc Natl Acad Sci USA 102:10 333–10 338.CrossRefGoogle ScholarPubMed
Laurent, G. (2002). Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci 3:884–895.CrossRefGoogle ScholarPubMed
Levick, W. R., Cleland, B. G., and Dubin, M. W. (1972). Lateral geniculate neurons of the cat: retinal inputs and physiology. Invest Ophthalmol 11:302–311.Google ScholarPubMed
Llinas, R., Ribary, U., Contreras, D., and Pedroarena, C. (1998). The neuronal basis for consciousness. Phil Trans R Soc Lond B 353:1841–1849.CrossRefGoogle ScholarPubMed
Lu, T., Liang, L., and Wang, X. (2001). Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat Neurosci 4:1131–1138.CrossRefGoogle ScholarPubMed
Macaluso, E. and Driver, J. (2005). Multisensory spatial interactions: a window onto functional integration in the human brain. Trends Neurosci 28:264–271.CrossRefGoogle ScholarPubMed
Machens, C. K., Romo, R., and Brody, C. D. (2005). Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science 307:1121–1124.CrossRefGoogle ScholarPubMed
Mandon, S. and Kreiter, A. K. (2005). Rapid contour integration in macaque monkeys. Vision Res 45:291–300.CrossRefGoogle ScholarPubMed
Marder, E., Abbott, L. F., Turrigiano, G. G., Liu, Z., and Golowasch, J. (1996). Memory from the dynamics of intrinsic membrane currents. Proc Natl Acad Sci USA 93:13 481–13 486.CrossRefGoogle ScholarPubMed
Miller, E. K., Erickson, C. A., and Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 16:5154–5167.CrossRefGoogle ScholarPubMed
Miller, E. K., Freedman, D. J., and Wallis, J. D. (2002). The prefrontal cortex: categories, concepts and cognition. Phil Trans R Soc Lond B 357:1123–1136.CrossRefGoogle ScholarPubMed
Miyashita, Y. (2004). Cognitive memory: cellular and network machineries and their top–down control. Science 306:435–440.CrossRefGoogle ScholarPubMed
Mokeichev, A., Okun, M., Barak, O., et al. (2007). Stochastic emergence of repeating cortical motifs in spontaneous membrane potential fluctuations in vivo. Neuron 53:413–425.CrossRefGoogle ScholarPubMed
Munk, M. H. (2001). Role of gamma oscillations for information processing and memory formation in the neocortex. In: Neuronal Mechanisms of Memory Formation, ed. Hölscher, C., pp. 167–194. Cambridge, UK: Cambridge University Press.Google Scholar
Munk, M. H. and Neuenschwander, S. (2000). High-frequency oscillations (20 to 120 Hz) and their role in visual processing. J Clin Neurophysiol 17:341–360.CrossRefGoogle ScholarPubMed
Munk, M. H., Nowak, L. G., Nelson, J. I., and Bullier, J. (1995). Structural basis of cortical synchronization. II. Effects of cortical lesions. J Neurophysiol 74:2401–2414.CrossRefGoogle ScholarPubMed
Nelken, I., Chechik, G., Mrsic-Flogel, T. D., King, A. J., and Schnupp, J. W. (2005). Encoding stimulus information by spike numbers and mean response time in primary auditory cortex. J Comput Neurosci 19:199–221.CrossRefGoogle ScholarPubMed
Niessing, J., Ebisch, B., Schmidt, K. E., et al. (2005). Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309:948–951.CrossRefGoogle ScholarPubMed
Nir, Y., Hasson, U., Levy, I., Yeshurun, Y., and Malach, R. (2006). Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation. Neuroimage 30:1313–1324.CrossRefGoogle ScholarPubMed
Nowak, L. G., Munk, M. H., Girard, P., and Bullier, J. (1995a). Visual latencies in areas V1 and V2 of the macaque monkey. Visual Neurosci 12:371–384.CrossRefGoogle ScholarPubMed
Nowak, L. G., Munk, M. H., Nelson, J. I., James, A. C., and Bullier, J. (1995b). Structural basis of cortical synchronization. I. Three types of interhemispheric coupling. J Neurophysiol 74:2379–2400.CrossRefGoogle ScholarPubMed
Olshausen, B. A., Anderson, C. H., and Van, E. (1993). A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J Neurosci 13:4700–4719.CrossRefGoogle Scholar
Oram, M. W., Wiener, M. C., Lestienne, R., and Richmond, B. J. (1999). Stochastic nature of precisely timed spike patterns in visual system neuronal responses. J Neurophysiol 81:3021–3033.CrossRefGoogle ScholarPubMed
Parker, A. J. and Newsome, W. T. (1998). Sense and the single neuron: probing the physiology of perception. Annu Rev Neurosci 21:227–277.CrossRefGoogle Scholar
Payne, B. R., Lomber, S. G., Villa, A. E., and Bullier, J. (1996). Reversible deactivation of cerebral network components. Trends Neurosci 19:535–542.CrossRefGoogle ScholarPubMed
Perrett, D. I., Rolls, E. T., and Caan, W. (1982). Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res 47:329–342.CrossRefGoogle ScholarPubMed
Petermann, T., Lebedev, M. A., Nicolelis, M., and Plenz, D. (2006). Neuronal avalanches in vivo. Soc Neurosci Abstr 32:539.1.Google Scholar
Phillips, W. A. and Singer, W. (1997). In search of common foundations for cortical computation. Behav Brain Sci 20:657–683.CrossRefGoogle ScholarPubMed
Plenz, D. and Thiagarajan, T. C. (2007). The organizing principles of neuronal avalanches: cell assemblies in the cortex?Trends Neurosci 30:101–110.CrossRefGoogle ScholarPubMed
Pouget, A., Dayan, P., and Zemel, R. (2000). Information processing with population codes. Nat Rev Neurosci 1:125–132.CrossRefGoogle ScholarPubMed
Prut, Y., Vaadia, E., Bergman, H., et al. (1998). Spatiotemporal structure of cortical activity: properties and behavioral relevance. J Neurophysiol 79:2857–2874.CrossRefGoogle ScholarPubMed
Quintana, J., Yajeya, J., and Fuster, J. M. (1988). Prefrontal representation of stimulus attributes during delay tasks. I. Unit activity in cross-temporal integration of sensory and sensory-motor information. Brain Res 474:211–221.CrossRefGoogle ScholarPubMed
Reinagel, P. and Reid, R. C. (2000). Temporal coding of visual information in the thalamus. J Neurosci 20:5392–5400.CrossRefGoogle ScholarPubMed
Rockland, K. S. (1992). Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey. Cereb Cortex 2:353–374.CrossRefGoogle ScholarPubMed
Rockland, K. S. (2002). Non-uniformity of extrinsic connections and columnar organization. J Neurocytol 31:247–253.CrossRefGoogle ScholarPubMed
Rodriguez, E., George, N., Lachaux, J. P., et al. (1999). Perception's shadow: long-distance synchronization of human brain activity. Nature 397:430–433.CrossRefGoogle ScholarPubMed
Rolls, E. T., Treves, A., and Tovee, M. J. (1997). The representational capacity of the distributed encoding of information provided by populations of neurons in primate temporal visual cortex. Exp Brain Res 114:149–162.CrossRefGoogle ScholarPubMed
Rousselet, G. A., Thorpe, S. J., and Fabre-Thorpe, M. (2003). Taking the MAX from neuronal responses. Trends Cogn Sci 7:99–102.CrossRefGoogle ScholarPubMed
Saalmann, Y. B., Pigarev, I. N., and Vidyasagar, T. R. (2007). Neural mechanisms of visual attention: how top–down feedback highlights relevant locations. Science 316:1612–1615.CrossRefGoogle ScholarPubMed
Saleem, K. S., Tanaka, K., and Rockland, K. S. (1993). Specific and columnar projection from area TEO to TE in the macaque inferotemporal cortex. Cereb Cortex 3:454–464.CrossRefGoogle ScholarPubMed
Salin, P. A. and Bullier, J. (1995). Corticocortical connections in the visual system: structure and function. Physiol Rev 75:107–154.CrossRefGoogle ScholarPubMed
Salinas, E. and Sejnowski, T. J. (2001). Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2:539–550.CrossRefGoogle ScholarPubMed
Salzman, C. D. and Newsome, W. T. (1994). Neural mechanisms for forming a perceptual decision. Science 264:231–237.CrossRefGoogle ScholarPubMed
Salzman, C. D., Murasugi, C. M., Britten, K. H., and Newsome, W. T. (1992). Microstimulation in visual area MT: effects on direction discrimination performance. J Neurosci 12:2331–2355.CrossRefGoogle ScholarPubMed
Schaefer, A. T., Angelo, K., Spors, H., and Margrie, T. W. (2006). Neuronal oscillations enhance stimulus discrimination by ensuring action potential precision. PLoS Biol 4:e163.CrossRefGoogle ScholarPubMed
Schoffelen, J. M., Oostenveld, R., and Fries, P. (2005). Neuronal coherence as a mechanism of effective corticospinal interaction. Science 308:111–113.CrossRefGoogle ScholarPubMed
Schroeder, C. E. and Foxe, J. (2005). Multisensory contributions to low-level, “unisensory” processing. Curr Opin Neurobiol 15:454–458.CrossRefGoogle ScholarPubMed
Shmiel, T., Drori, R., Shmiel, O., et al. (2005). Neurons of the cerebral cortex exhibit precise interspike timing in correspondence to behavior. Proc Natl Acad Sci USA 102:18 655–18 657.CrossRefGoogle Scholar
Shmuel, A., Augath, M., Oeltermann, A., and Logothetis, N. K. (2006). Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577.CrossRefGoogle ScholarPubMed
Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of relations?Neuron 24:49–25.CrossRefGoogle ScholarPubMed
Singer, W., Engel, A. K., Kreiter, A. K., et al. (1997). Neuronal assemblies: necessity, signature and detectability. Trends Cogn Sci 1:252–261.CrossRefGoogle ScholarPubMed
Snider, R. K., Kabara, J. F., Roig, B. R., and Bonds, A. B. (1998). Burst firing and modulation of functional connectivity in cat striate cortex. J Neurophysiol 80:730–744.CrossRefGoogle Scholar
Sporns, O., Tononi, G., and Edelman, G. M. (2000). Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Networks 13:909–922.CrossRefGoogle ScholarPubMed
Staedtler, E. S., Pipa, G., Muckli, L. F., Goebel, R., and Munk, M. H. (2006). Dissimilarity of firing rate patterns suggest population coding of visual objects in prefrontal cortex during short-term memory. Soc Neurosci Abstr 32:812.14.Google Scholar
Stewart, C. V. and Plenz, D. (2006). Inverted-U profile of dopamine-NMDA-mediated spontaneous avalanche recurrence in superficial layers of rat prefrontal cortex. J Neurosci 26:8148–8159.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C., Mandon, S., Freiwald, W. A., and Kreiter, A. K. (2004). Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task. Cereb Cortex 14:713–720.CrossRefGoogle Scholar
Tanigawa, H., Wang, Q., and Fujita, I. (2005). Organization of horizontal axons in the inferior temporal cortex and primary visual cortex of the macaque monkey. Cereb Cortex 15:1887–1899.CrossRefGoogle ScholarPubMed
Taylor, D. M., Tillery, S. I., and Schwartz, A. B. (2002). Direct cortical control of 3D neuroprosthetic devices. Science 296:1829–1832.CrossRefGoogle ScholarPubMed
Tononi, G., Sporns, O., and Edelman, G. M. (1996). A complexity measure for selective matching of signals by the brain. Proc Natl Acad Sci USA 93:3422–3427.CrossRefGoogle Scholar
Tovee, M. J. and Rolls, E. T. (1992). Oscillatory activity is not evident in the primate temporal visual cortex with static stimuli. Neuroreport 3:369–372.CrossRefGoogle Scholar
Tsodyks, M. V. and Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci USA 94:719–723.CrossRefGoogle ScholarPubMed
Tsodyks, M., Kenet, T., Grinvald, A., and Arieli, A. (1999). Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286:1943–1946.CrossRefGoogle ScholarPubMed
Tsunoda, K., Yamane, Y., Nishizaki, M., and Tanifuji, M. (2001). Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci 4:832–838.CrossRefGoogle Scholar
VanRullen, R., Guyonneau, R., and Thorpe, S. J. (2005). Spike times make sense. Trends Neurosci 28:1–4.CrossRefGoogle ScholarPubMed
Villa, A. E., Tetko, I. V., Hyland, B., and Najem, A. (1999). Spatiotemporal activity patterns of rat cortical neurons predict responses in a conditioned task. Proc Natl Acad Sci USA 96:1106–1111.CrossRefGoogle Scholar
Wallis, J. D. and Miller, E. K. (2003). From rule to response: neuronal processes in the premotor and prefrontal cortex. J Neurophysiol 90:1790–1806.CrossRefGoogle ScholarPubMed
Wallis, J. D., Anderson, K. C., and Miller, E. K. (2001). Single neurons in prefrontal cortex encode abstract rules. Nature 411:953–956.CrossRefGoogle ScholarPubMed
Wang, X., Lu, T., Snider, R. K., and Liang, L. (2005). Sustained firing in auditory cortex evoked by preferred stimuli. Nature 435:341–346.CrossRefGoogle ScholarPubMed
Whitney, D., Westwood, D. A., and Goodale, M. A. (2003). The influence of visual motion on fast reaching movements to a stationary object. Nature 423:869–873.CrossRefGoogle ScholarPubMed
Wilson, R. I. and Laurent, G. (2005). Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 25:9069–9079.CrossRefGoogle ScholarPubMed
Xiang, J. Z. and Brown, M. W. (2004). Neuronal responses related to long-term recognition memory processes in prefrontal cortex. Neuron 42:817–829.CrossRefGoogle ScholarPubMed
Yamane, Y., Tsunoda, K., Matsumoto, M., Phillips, A. N., and Tanifuji, M. (2006). Representation of the spatial relationship among object parts by neurons in macaque inferotemporal cortex. J Neurophysiol 96:3147–3156.CrossRefGoogle ScholarPubMed
Young, M. P. and Yamane, S. (1992). Sparse population coding of faces in the inferotemporal cortex. Science 256:1327–1331.CrossRefGoogle ScholarPubMed
Yuste, R., MacLean, J. N., Smith, J., and Lansner, A. (2005). The cortex as a central pattern generator. Nat Rev Neurosci 6:477–483.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats