Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-mzfmx Total loading time: 0.717 Render date: 2022-08-10T02:33:32.722Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

13 - A face in the crowd: which groups of neurons process face stimuli, and how do they interact?

Published online by Cambridge University Press:  14 August 2009

Christian Holscher
Affiliation:
University of Ulster
Matthias Munk
Affiliation:
Max-Planck-Institut für biologische Kybernetik, Tübingen
Get access

Summary

Introduction

Neural responses to face stimuli may seem like an unwieldy subject for investigating population activity: neurons with face-selective responses are many synapses removed from sensory input, the coding for faces appears to be very sparse, and the stimuli are complex making “proper” control stimuli difficult to come by. So why bother? To the extent that population coding underlies certain cognitive abilities, then those activities that are biological imperatives for the animal should be given “neural priority.” In the rat, foraging and spatial localization relative to “home” points is one critical natural behavior. In primates, social cognition is essential. With the face at the heart of social communication and identification of social status, it should not come as a surprise that neurons appear to “care” about face stimuli in a way not seen for many non-face objects. But the nature of perceiving and learning about facial signals, in terms of population dynamics, is very under-explored territory. Surprisingly, in regions most often associated with face-selective responses, the conclusion of some researchers has been that population activity may add little to nothing to the perception of faces. The current state of knowledge regarding neural bases of face perception will be discussed. The role, if any, of population dynamics, will then be explored. Specifically, the population interactions of face-processing systems across space (e.g. circuits), and time (e.g. oscillations) will be discussed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeles, M., Vaadia, E., Bergman, H., et al. (1993). Dynamics of neuronal interactions in the frontal cortex of behaving monkeys. Concepts Neurosci 4:131–158.Google Scholar
Adolphs, R., Tranel, D., Damasio, H., and Damasio, A. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372:669–672.CrossRefGoogle ScholarPubMed
Afraz, S.-R., Kiani, R., and Esteky, H. (2006). Microstimulation of inferotemporal cortex influences face categorization. Nature 442:692–695.CrossRefGoogle ScholarPubMed
Allison, T., Ginter, H., McCarthy, G., et al. (1994). Face recognition in human extrastriate cortex. J Neurophysiol 71:821–825.CrossRefGoogle ScholarPubMed
Allison, T., Puce, A., Spencer, D. D., and McCarthy, G. (1999). Electrophysiological studies of human face perception. I. Potentials generated in occipitotemporal cortex by face and non-face stimuli. Cereb Cortex 9:415–430.CrossRefGoogle ScholarPubMed
Bachevalier, J., Malkova, L., and Mishkin, M. (2001). Effects of selective neonatal temporal lobe lesions on socioemotional behavior in infant rhesus monkeys (Macaca mulatta). Behavi Neurosci 115:545–559.CrossRefGoogle Scholar
Bartels, A. and Zeki, S. (2004). Functional brain mapping during free viewing of natural scenes. Hum Brain Map 21:75–85.CrossRefGoogle ScholarPubMed
Baylis, G. C., Rolls, E. T., and Leonard, C. M. (1987). Functional subdivisions of the temporal lobe neocortex. J Neurosci 7:330–342.CrossRefGoogle ScholarPubMed
Benton, A. L. (1980). The neuropsychology of facial recognition. Am Psychol 35:176–186.CrossRefGoogle ScholarPubMed
Blonder, L. X., Smith, C. D., Davis, C. E., et al. (2004). Regional brain response to faces of humans and dogs. Cogn Brain Res 20:384–394.CrossRefGoogle Scholar
Bressler, S. L., Coppola, R., and Nakamura, R. (1993). Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366:153–156.CrossRefGoogle ScholarPubMed
Bruce, C. (1982). Face recognition by monkeys: absence of an inversion effect. Neuropsychologia 20:515–521.CrossRefGoogle ScholarPubMed
Bruce, C., Desimone, R., and Gross, C. G. (1981). Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46:369–384.CrossRefGoogle Scholar
Buschman, T. J. and Miller, E. K. (2007). Top–down versus bottom–up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862.CrossRefGoogle ScholarPubMed
Buzsáki, G. (2004). Large-scale recording of neuronal ensembles. Nat Neurosci 7:446–451.CrossRefGoogle ScholarPubMed
Cassenaer, S. and Laurent, G. (2007). Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts. Nature 448:709–713.CrossRefGoogle ScholarPubMed
Chao, L. L., Martin, A., and Haxby, J. V. (1999). Are face-responsive regions selective only for faces?Neuroreport 10:2945–2950.CrossRefGoogle ScholarPubMed
Chaudhuri, A., Nissanov, J., Larocque, S., and Rioux, L. (1997). Dual activity maps in primate visual cortex produced by different temporal patterns of zif268 mRNA and protein expression. Proc Natl Acad Sci USA 94:2671–2675.CrossRefGoogle ScholarPubMed
Clark, V. P., Keil, K., Maisog, J. M., et al. (1996). Functional magnetic resonance imaging of human visual cortex during face matching: a comparison with positron emission tomography. Neuroimage 4:1–15.CrossRefGoogle ScholarPubMed
Dahl, C. D., Logothetis, N. K., and Hoffman, K. L. (2007). Individuation and holistic processing of faces in rhesus monkeys. Proc R Soc Lond B 274:2069–2076.CrossRefGoogle ScholarPubMed
Damasio, A. R. (1989). Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition. Cognition 33:25–62.CrossRefGoogle ScholarPubMed
Damasio, A. R., Damasio, H., and Hoesen, G. W. (1982). Prosopagnosia: anatomical basis and behavioral mechanisms. Neurology 32:331–341.CrossRefGoogle Scholar
Dasser, V. (1988). A social concept in Java monkeys. Anim Behav 36:225–230.CrossRefGoogle Scholar
Deaner, R. O. and Platt, M. L. (2003). Reflexive social attention in monkeys and humans. Curr Biol 13:1609–1613.CrossRefGoogle ScholarPubMed
Desimone, R. and Gross, C. G. (1979). Visual areas in the temporal cortex of the macaque. Brain Res 178:363–380.CrossRefGoogle ScholarPubMed
Desimone, R., Albright, T. D., Gross, C. G., and Bruce, C. (1984). Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci 4:2051–2062.CrossRefGoogle ScholarPubMed
Eifuku, S., Souza, W. C., Tamura, R., Nishijo, H., and Ono, T. (2004). Neuronal correlates of face identification in the monkey anterior temporal cortical areas. J Neurophysiol 91:358–371.CrossRefGoogle ScholarPubMed
Emery, N. J., Lorincz, E. N., Perrett, D. I., Oram, M. W., and Baker, C. I. (1997). Gaze following and joint attention in rhesus monkeys (Macaca mulatta). J Comp Psychol 111:286–293.CrossRefGoogle Scholar
Fell, J., Klaver, P., Lehnertz, K., et al. (2001). Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nat Neurosci 4:1259–1264.CrossRefGoogle ScholarPubMed
Ferrari, P. F., Gallese, V., Rizzolatti, G., and Fogassi, L. (2003). Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. Eur J Neurosci 17:1703–1714.CrossRefGoogle ScholarPubMed
Freeman, W. J. (1975). Mass Action in the Nervous System. New York: Academic Press.Google Scholar
Fried, I., MacDonald, K. A., and Wilson, C. L. (1997). Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18:753–765.CrossRefGoogle ScholarPubMed
Gauthier, I., Tarr, M. J., Moylan, J., et al. (2000). The fusiform “face area” is part of a network that processes faces at the individual level. J Cogn Neurosci 12:495–504.CrossRefGoogle ScholarPubMed
Gawne, T. J. and Richmond, B. J. (1993). How independent are the messages carried by adjacent inferior temporal cortical neurons?J Neurosci 13:2758–2771.CrossRefGoogle ScholarPubMed
Gochin, P. M., Colombo, M., Dorfman, G. A., Gerstein, G. L., and Gross, C. G. (1994). Neural ensemble coding in inferior temporal cortex. J Neurophysiol 71:2325–2337.CrossRefGoogle ScholarPubMed
Gothard, K. M., Erickson, C. A., and Amaral, D. G. (2004). How do rhesus monkeys (Macaca mulatta) scan faces in a visual paired comparison task?Anim Cogn 7:25–36.CrossRefGoogle Scholar
Grill Spector, K., Kourtzi, Z., and Kanwisher, N. (2001). The lateral occipital complex and its role in object recognition. Vision Res 41:1409–1422.CrossRefGoogle ScholarPubMed
Gross, C. G. (1978). Inferior temporal lesions do not impair discrimination of rotated patterns in monkeys. J Comp Physiol Psychol 92:1095–1109.CrossRefGoogle Scholar
Gross, C. G., Rocha-Miranda, C. E., and Bender, D. B. (1972). Visual properties of neurons in inferotemporal cortex of the macaque. J Neurophysiol 35:96–111.CrossRefGoogle ScholarPubMed
Guzowski, J. F., McNaughton, B. L., Barnes, C. A., and Worley, P. F. (1999). Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci 2:1120–1124.CrossRefGoogle ScholarPubMed
Halgren, E., Dale, A. M., Sereno, M. I., et al. (1999). Location of human face-selective cortex with respect to retinotopic areas. Hum Brain Map 7:29–37.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Harries, M. H. and Perrett, D. I. (1991). Visual processing of faces in temporal cortex: physiological evidence for a modular organization and possible anatomical correlates. J Cogn Neurosci 3:9–24.CrossRefGoogle ScholarPubMed
Hasselmo, M. E., Rolls, E. T., and Baylis, G. C. (1989). The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey. Behav Brain Res 32:203–218.CrossRefGoogle ScholarPubMed
Haude, R. H. and Detwiler, D. H. (1976). Visual observing by rhesus monkeys: influence of potentially threatening stimuli. Percept Motor Skills 43:231–237.CrossRefGoogle ScholarPubMed
Haude, R. H., Graber, J. G., and Farres, A. G. (1976). Visual observing by rhesus monkeys: some relationships with social dominance ranks. Anim Learn Behav 4:163–166.CrossRefGoogle Scholar
Haxby, J. V., Horwitz, B., Ungerleider, L. G., et al. (1994). The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. J Neurosci 14:6336–6353.CrossRefGoogle ScholarPubMed
Heit, G., Smith, M. E., and Halgren, E. (1988). Neural encoding of individual words and faces by the human hippocampus and amygdala. Nature 333:773–775.CrossRefGoogle ScholarPubMed
Heywood, C. A. and Cowey, A. (1992). The role of the “face-cell” area in the discrimination and recognition of faces by monkeys. Phil Trans R Soc Lond B 335:31–38.CrossRefGoogle ScholarPubMed
Hirabayashi, T. and Miyashita, Y. (2005). Dynamically modulated spike correlation in monkey inferior temporal cortex depending on the feature configuration within a whole object. J Neurosci 25:10 299–10 307.CrossRefGoogle Scholar
Hoffman, E. A. and Haxby, J. V. (2000). Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat Neurosci 3:80–84.CrossRefGoogle ScholarPubMed
Hoffman, K. L., Gothard, K. M., Schmid, M. C., and Logothetis, N. K. (2007a). Facial-expression and gaze-selective responses in the monkey amygdala. Curr Biol 17:766–772.CrossRefGoogle ScholarPubMed
Hoffman, K. L., Battaglia, F. P., Harris, K. D., et al. (2007b). The upshot of up states in neocortex: from slow oscillations to memory formation. J Neurosci 27:11 838–11 841.CrossRefGoogle ScholarPubMed
Horel, J. A. (1993). Retrieval of a face discrimination during suppression of monkey temporal cortex with cold. Neuropsychologia 31:1067–1077.CrossRefGoogle ScholarPubMed
Horel, J. A., Pytko-Joiner, D. E., Voytko, M. L., and Salsbury, K. (1987). The performance of visual tasks while segments of the inferotemporal cortex are suppressed by cold. Behav Brain Res 23:29–42.CrossRefGoogle Scholar
Humphrey, N. K. (1974). Species and individuals in the perceptual world of monkeys. Perception 3:105–114.CrossRefGoogle ScholarPubMed
Hung, C. P., Kreiman, G., Poggio, T., and DiCarlo, J. J. (2005). Fast readout of object identity from macaque inferior temporal cortex. Science 310:863–866.CrossRefGoogle ScholarPubMed
Ishai, A., Haxby, J. V., and Ungerleider, L. G. (2002). Visual imagery of famous faces: effects of memory and attention revealed by fMRI. Neuroimage 17:1729–1741.CrossRefGoogle ScholarPubMed
Ishai, A., Pessoa, L., Bikle, P. C., and Ungerleider, L. G. (2004). Repetition suppression of faces is modulated by emotion. Proc Nat Acad Sci USA 101:9827–9832.CrossRefGoogle Scholar
Ishai, A., Schmidt, C. F., and Boesiger, P. (2005). Face perception is mediated by a distributed cortical network. Brain Res Bull 67:87–93.CrossRefGoogle ScholarPubMed
Jellema, T. and Perrett, D. I. (2003). Perceptual history influences neural responses to face and body postures. J Cogn Neurosci 15:961–971.CrossRefGoogle ScholarPubMed
Ji, D. and Wilson, M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10:100–107.CrossRefGoogle ScholarPubMed
Kanwisher, N., McDermott, J., and Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311.CrossRefGoogle ScholarPubMed
Kay, L. M. (2005). Theta oscillations and sensorimotor performance. Proc Nat Acad Sci USA 102:3863–3868.CrossRefGoogle ScholarPubMed
Kiani, R., Esteky, H., and Tanaka, K. (2005). Differences in onset latency of macaque inferotemporal neural responses to primate and non-primate faces. J Neurophysiol 94:1587–1596.CrossRefGoogle ScholarPubMed
Killgore, W. D. and Yurgelun-Todd, D. A. (2004). Activation of the amygdala and anterior cingulate during nonconscious processing of sad versus happy faces. Neuroimage 21:1215–1223.CrossRefGoogle ScholarPubMed
Koba, R. and Izumi, A. (2006). Sex categorization of conspecific pictures in Japanese monkeys (Macaca fuscata). Anim Cogn 9:183–191.CrossRefGoogle Scholar
Kreiman, G., Koch, C., and Fried, I. (2000). Category-specific visual responses of single neurons in the human medial temporal lobe. Nat Neurosci 3:946–953.CrossRefGoogle ScholarPubMed
Kreiman, G., Hung, C. P., Kraskov, A., et al. (2006). Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron 49:433–445.CrossRefGoogle ScholarPubMed
Leonard, C. M., Rolls, E. T., Wilson, F. A. W., and Baylis, G. C. (1985). Neurons in the amygdala of the monkey with responses selective for faces. Behav Brain Res 15:159–176.CrossRefGoogle ScholarPubMed
Leopold, D. A., Bondar, I. V., and Giese, M. A. (2006). Norm-based face encoding by single neurons in the monkey inferotemporal cortex. Nature 442:572–575.CrossRefGoogle ScholarPubMed
Logothetis, N. K., Guggenberger, H., Peled, S., and Pauls, J. (1999). Functional imaging of the monkey brain. Nat Neurosci 2:555–562.CrossRefGoogle ScholarPubMed
Luczak, A., Bartho, P., Marguet, S. L., Buzsáki, G., and Harris, K. D. (2007). Sequential structure of neocortical spontaneous activity in vivo. Proc Nat Acad Sci USA 104:347–352.CrossRefGoogle ScholarPubMed
MacLean, J. N., Watson, B. O., Aaron, G. B., and Yuste, R. (2005). Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48:811–823.CrossRefGoogle ScholarPubMed
Malach, R., Reppas, J. B., Benson, R. R., et al. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92:8135–8139.CrossRefGoogle ScholarPubMed
Malkova, L., Mishkin, M., Suomi, S. J., and Bachevalier, J. (1997). Socioemotional behavior in adult rhesus monkeys after early versus late lesions of the medial temporal lobe. Ann N Y Acad Sci 807:538–540.CrossRefGoogle ScholarPubMed
Marshall, L., Helgadóttir, H., Mölle, M., and Born, J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature 444:610–613.CrossRefGoogle ScholarPubMed
McCarthy, G., Puce, A., Gore, J. C., and Allison, T. (1997). Face-specific processing in the human fusiform gyrus. J Cogn Neurosci 9:605–610.CrossRefGoogle ScholarPubMed
McCarthy, G., Puce, A., Belger, A., and Allison, T. (1999). Electrophysiological studies of human face perception. II. Response properties of face-specific potentials generated in occipitotemporal cortex. Cereb Cortex 5:431–444.CrossRefGoogle Scholar
McNaughton, B. L. and Barnes, C. A. (1990). From cooperative synaptic enhancement to associative memory: bridging the abyss. Sem Neurosci 2:403–416.Google Scholar
Meadows, J. C. (1974). The anatomical basis of prosopagnosia. J Neurol Neurosurg Psychiat 37:489–501.CrossRefGoogle ScholarPubMed
Morris, J. S., Frith, C. D., Perrett, D. I., et al. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383:812–815.CrossRefGoogle ScholarPubMed
Nakamura, K., Mikami, A., and Kubota, K. (1992). Activity of single neurons in the monkey amygdala during performance of a visual discrimination task. J Neurophysiol 67:1447–1463.CrossRefGoogle ScholarPubMed
Oram, M. W. and Perrett, D. I. (1994). Responses of anterior superior temporal polysensory (STPa) neurons to “biological motion” stimuli. J Cogn Neurosci 6:99–116.CrossRefGoogle ScholarPubMed
Oram, M. W., Perrett, D. I., and Hietanen, J. K. (1993). Directional tuning of motion-sensitive cells in the anterior superior temporal polysensory area of the macaque. Exp Brain Res 97:274–294.CrossRefGoogle ScholarPubMed
O'Scalaidhe, S. P., Wilson, F. A., and Goldman-Rakic, P. S. (1997). Areal segregation of face-processing neurons in prefrontal cortex. Science 278:1135–1138.CrossRefGoogle Scholar
Parr, L., Winslow, J. T., and Hopkins, W. (1999). Is the inversion effect in rhesus monkeys face-specific?Anim Cogn 2:123–129.CrossRefGoogle Scholar
Perrett, D. I., Rolls, E. T., and Caan, W. (1982). Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res 47:329–342.CrossRefGoogle ScholarPubMed
Perrett, D. I., Smith, P. A. J., Potter, D. D., et al. (1985). Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc R Soc Lond B 223:293–317.CrossRefGoogle ScholarPubMed
Perrett, D. I., Mistlin, A. J., Chitty, A. J., et al. (1988). Specialized face processing and hemispheric asymmetry in man and monkey: evidence from single unit and reaction time studies. Behav Brain Res 29:245–258.CrossRefGoogle ScholarPubMed
Perrett, D. I., Hietanen, J. K., Oram, M. W., and Benson, P. J. (1992). Organization and functions of cells responsive to faces in the temporal cortex. Phil Trans R Soc Lond B 335:23–30.CrossRefGoogle ScholarPubMed
Phillips, M. L., Young, A. W., Senior, C., et al. (1997). A specific neural substrate for perceiving facial expressions of disgust. Nature 389:495–498.CrossRefGoogle ScholarPubMed
Pinsk, M. A., DeSimone, K., Moore, T., Gross, C. G., and Kastner, S. (2005). Representations of faces and body parts in macaque temporal cortex: a functional MRI study. Proc Natl Acad Sci USA 102:6996–7001.CrossRefGoogle ScholarPubMed
Pinsk, M. A., Weiner, K. S., Gross, C. G., Ghazanfar, A. A., and Kastner, S. (2006). Activation of a face processing network in the macaque using dynamic stimuli. Soc Neurosci Annu Mtg 438.413.Google Scholar
Privman, E., Nir, Y., Kramer, U., et al. (2007). Enhanced category tuning revealed by intracranial electroencephalograms in high-order human visual areas. J Neurosci 27:6234–6242.CrossRefGoogle ScholarPubMed
Puce, A. and Perrett, D. (2003). Electrophysiology and brain imaging of biological motion. Phil Trans R Soc Lond B 358:435–445.CrossRefGoogle ScholarPubMed
Puce, A., Allison, T., Bentin, S., Gore, J. C., and McCarthy, G. (1998). Temporal cortex activation in humans viewing eye and mouth movements. J Neurosci 18:2188–2199.CrossRefGoogle ScholarPubMed
Puce, A., Allison, T., and McCarthy, G. (1999). Electrophysiological studies of human face perception. III. Effects of top–down processing on face-specific potentials. Cereb Cortex 9:445–458.CrossRefGoogle ScholarPubMed
Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., and Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature 435:1102–1107.CrossRefGoogle ScholarPubMed
Redican, W. K., Kellicut, M. H., and Mitchell, G. (1971). Preferences for facial expressions in juvenile rhesus monkeys. Dev Psychol 5:539–642.CrossRefGoogle Scholar
Richmond, B. J., Optican, L. M., Podell, M., and Spitzer, H. (1987). Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. J Neurophysiol 57:132–146.CrossRefGoogle ScholarPubMed
Rodriguez, E., George, N., Lachaux, J.-P., et al. (1999). Perception's shadow: long-distance synchronization of human brain activity. Nature 397:430.CrossRefGoogle ScholarPubMed
Rollenhagen, J. E. and Olson, C. R. (2005). Low-frequency oscillations arising from competitive interactions between visual stimuli in macaque inferotemporal cortex. J Neurophysiol 94:3368–3387.CrossRefGoogle ScholarPubMed
Rolls, E. T. (1984). Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. Hum Neurobiol 3:209–222.Google ScholarPubMed
Rolls, E. T. (1996). The orbitofrontal cortex. Phil Trans R Soc Lond B 351:1433–1443; discussion 1443–1434.CrossRefGoogle ScholarPubMed
Rolls, E. T. (2007). The representation of information about faces in the temporal and frontal lobes. Neuropsychologia 45:124–143.CrossRefGoogle ScholarPubMed
Rolls, E. T., Treves, A., and Tovee, M. J. (1997). The representational capacity of the distributed encoding of information provided by populations of neurons in primate temporal visual cortex. Exp Brain Res 114:149–162.CrossRefGoogle ScholarPubMed
Rolls, E. T., Franco, L., Aggelopoulos, N. C., and Reece, S. (2003). An information theoretic approach to the contributions of the firing rates and the correlations between the firing of neurons. J Neurophysiol 89:2810–2822.CrossRefGoogle ScholarPubMed
Rosenfeld, S. A. and Hoesen, G. W. (1979). Face recognition in the rhesus monkey. Neuropsychologia 17:503–509.CrossRefGoogle ScholarPubMed
Roskies, A. L. (1999). The binding problem. Neuron (Special Issue) 24:7–125.Google ScholarPubMed
Saalmann, Y. B., Pigarev, I. N., and Vidyasagar, T. R. (2007). Neural mechanisms of visual attention: how top–down feedback highlights relevant locations. Science 316:1612–1614.CrossRefGoogle ScholarPubMed
Sato, N. and Nakamura, K. (2001). Detection of directed gaze in rhesus monkeys (Macaca mulatta). J Comp Psychol 115:115–121.CrossRefGoogle Scholar
Schoffelen, J. M., Oostenveld, R., and Fries, P. (2005). Neuronal coherence as a mechanism of effective corticospinal interaction. Science 308:111–113.CrossRefGoogle ScholarPubMed
Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J., and Madsen, J. R. (2003). Theta and gamma oscillations during encoding predict subsequent recall. J Neurosci 23:10 809–10 814.CrossRefGoogle ScholarPubMed
Sederberg, P. B., Schulze-Bonhage, A., Madsen, J. R., et al. (2007). Hippocampal and neocortical gamma oscillations predict memory formation in humans. Cereb Cortex 17:1190–1196.CrossRefGoogle ScholarPubMed
Sergent, J. and Signoret, J. L. (1992). Varieties of functional deficits in prosopagnosia. Cereb Cortex 2:375–388.CrossRefGoogle ScholarPubMed
Sergent, J., Ohta, S., and MacDonald, B. (1992). Functional neuroanatomy of face and object processing: a positron emission tomography study. Brain 115:15–36.CrossRefGoogle ScholarPubMed
Shepherd, S. V., Deaner, R. O., and Platt, M. L. (2006). Social status gates social attention in monkeys. Curr Biol 16:R119–R120.CrossRefGoogle ScholarPubMed
Swartz, K. B. (1983). Species discrimination in infant pigtail macaques with pictorial stimuli. Dev Psychobiol 16:219–231.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C., Mandon, S., Freiwald, W. A., and Kreiter, A. K. (2004). Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task. Cereb Cortex 14:713–720.CrossRefGoogle Scholar
Tanaka, K. (2003). Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. Cereb Cortex 13:90–99.CrossRefGoogle ScholarPubMed
Thomas, E., Hulle, M. M., and Vogel, R. (2001). Encoding of categories by noncategory-specific neurons in the inferior temporal cortex. J Cogn Neurosci 13:190–200.CrossRefGoogle ScholarPubMed
Thorpe, S. J., Rolls, E. T., and Maddison, S. (1983). The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp Brain Res 49:93–115.CrossRefGoogle ScholarPubMed
Tovee, M. J. and Rolls, E. T. (1992). Oscillatory activity is not evident in the primate temporal visual cortex with static stimuli. Neuroreport 3:369–372.CrossRefGoogle Scholar
Tovee, M. J., Rolls, E. T., Treves, A., and Bellis, R. P. (1993). Information encoding and the responses of single neurons in the primate temporal visual cortex. J Neurophysiol 70:640–654.CrossRefGoogle ScholarPubMed
Tsao, D. Y., Freiwald, W. A., Knutsen, T. A., Mandeville, J. B., and Tootell, R. B. (2003). Faces and objects in macaque cerebral cortex. Nat Neurosci 6:989–995.CrossRefGoogle ScholarPubMed
Tsao, D. Y., Freiwald, W. A., Tootell, R. B., and Livingstone, M. S. (2006). A cortical region consisting entirely of face-selective cells. Science 311:670–674.CrossRefGoogle ScholarPubMed
Uchida, G., Fukuda, M., and Tanifuji, M. (2006). Correlated transition between two activity states of neurons. Phys Rev E 73:031910.CrossRefGoogle ScholarPubMed
Varela, F., Lachaux, J. P., Rodriguez, E., and Martinerie, J. (2001). The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239.CrossRefGoogle ScholarPubMed
Vermeire, B. A. and Hamilton, C. R. (1998). Inversion effect for faces in split-brain monkeys. Neuropsychologia 36:1003–1014.CrossRefGoogle ScholarPubMed
Vuilleumier, P., Armony, J. L., Driver, J., and Dolan, R. J. (2001). Effects of attention and emotion on face processing in the human brain: an event-related fMRI study. Neuron 30:829–841.CrossRefGoogle Scholar
Vuilleumier, P., Richardson, M. P., Armony, J. L., Driver, J., and Dolan, R. J. (2004). Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nat Neurosci 7:1271–1278.CrossRefGoogle ScholarPubMed
Waitt, C., Little, A. C., Wolfensohn, S., et al. (2003). Evidence from rhesus macaques suggests that male coloration plays a role in female primate mate choice. Proc R Soc Lond B 270:S144–S146.CrossRefGoogle Scholar
Wang, G., Tanaka, K., and Tanifuji, M. (1996). Optical imaging of functional organization in the monkey infereotemporal cortex. Science 272:1665–1668.CrossRefGoogle ScholarPubMed
Webster, M. J., Ungerleider, L. G., and Bachevalier, J. (1991). Lesions of inferior temporal area TE in infant monkeys alter cortico-amygdalar projections. Neuroreport 2:769–772.CrossRefGoogle ScholarPubMed
Winston, J. S., Henson, R. N., Fine-Goulden, M. R., and Dolan, R. J. (2004). fMRI-adaptation reveals dissociable neural representations of identity and expression in face perception. J Neurophysiol 92:1830–1839.CrossRefGoogle ScholarPubMed
Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., et al. (2007). Modulation of neuronal interactions through neuronal synchronization. Science 316:1609–1612.CrossRefGoogle ScholarPubMed
Young, A. W., Aggleton, J. P., Hellawell, D. J., et al. (1995). Face processing impairments after amygdalotomy. Brain 118:15–24.CrossRefGoogle ScholarPubMed
Young, M. P. and Yamane, S. (1992). Sparse population coding of faces in the inferotemporal cortex. Science 256:1327–1331.CrossRefGoogle ScholarPubMed
Zangenehpour, S. and Chaudhuri, A. (2005). Patchy organization and asymmetric distribution of the neural correlates of face processing in monkey inferotemporal cortex. Curr Biol 15:993–1005.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×