Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-j6k2s Total loading time: 0 Render date: 2026-01-01T00:21:14.170Z Has data issue: false hasContentIssue false

3 - Artificial Synapses

Published online by Cambridge University Press:  aN Invalid Date NaN

Shriram Ramanathan
Affiliation:
Rutgers University, New Jersey
Abhronil Sengupta
Affiliation:
Pennsylvania State University
Get access

Summary

This chapter offers an in-depth discussion of various nanoelectronic and nanoionic synapses along with the operational mechanisms, capabilities and limitations, and directions for further advancements in this field. We begin with overarching mechanisms to design artificial synapses and learning characteristics for neuromorphic computing. Silicon-based synapses using digital CMOS platforms are described followed by emerging device technologies. Filamentary synapses that utilize nanoscale conducting pathways for forming and breaking current shunting routes within two-terminal devices are then discussed. This is followed by ferroelectric devices wherein polarization states of a switchable ferroelectric layer are responsible for synaptic plasticity and memory. Insulator–metal transition-based synapses are described wherein a sharp change in conductance of a layer due to external stimulus offers a route for compact synapse design. Organic materials, 2D van der Waals, and layered semiconductors are discussed. Ionic liquids and solid gate dielectrics for multistate memory and learning are presented. Photonic and spintronic synapses are then discussed in detail.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2026

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Xia, Q. and Yang, J. J., 2019. Memristive crossbar arrays for brain-inspired computing. Nature Materials, 18(4), pp. 309–323.Google ScholarPubMed
Li, Z., Liu, F., Yang, W., Peng, S. and Zhou, J., 2021. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems, 33(12), pp. 6999–7019.Google Scholar
LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. Nature, 521(7553), pp. 436–444.10.1038/nature14539CrossRefGoogle ScholarPubMed
Sengupta, A., Banerjee, A. and Roy, K., 2016. Hybrid spintronic-CMOS spiking neural network with on-chip learning: Devices, circuits, and systems. Physical Review Applied, 6(6), p. 064003.10.1103/PhysRevApplied.6.064003CrossRefGoogle Scholar
Rajendran, B., Liu, Y., Seo, J. S., Gopalakrishnan, K., Chang, L., Friedman, D. J. and Ritter, M. B., 2012. Specifications of nanoscale devices and circuits for neuromorphic computational systems. IEEE Transactions on Electron Devices, 60(1), pp. 246–253.Google Scholar
Sengupta, A., Ankit, A. and Roy, K., 2017, May. Performance analysis and benchmarking of all-spin spiking neural networks (special session paper). In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 4557–4563). IEEE.CrossRefGoogle Scholar
Chua, L., 1971. Memristor: The missing circuit element. IEEE Transactions on Circuit Theory, 18(5), pp. 507–519.10.1109/TCT.1971.1083337CrossRefGoogle Scholar
Nandakumar, S. R., Le Gallo, M., Piveteau, C., Joshi, V., Mariani, G., Boybat, I., Karunaratne, G., Khaddam-Aljameh, R., Egger, U., Petropoulos, A. and Antonakopoulos, T., 2020. Mixed-precision deep learning based on computational memory. Frontiers in Neuroscience, 14, p. 406.10.3389/fnins.2020.00406CrossRefGoogle ScholarPubMed
Sun, X., Liu, R., Peng, X. and Yu, S., 2018, October. Computing-in-memory with SRAM and RRAM for binary neural networks. In 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) (pp. 1–4). IEEE.CrossRefGoogle Scholar
Jerry, M., Chen, P. Y., Zhang, J., Sharma, P., Ni, K., Yu, S. and Datta, S., 2017, December. Ferroelectric FET analog synapse for acceleration of deep neural network training. In 2017 IEEE International Electron Devices Meeting (IEDM) (pp. 6–2). IEEE.CrossRefGoogle Scholar
Saha, A., Islam, A. N. M., Zhao, Z., Deng, S., Ni, K. and Sengupta, A., 2021. Intrinsic synaptic plasticity of ferroelectric field effect transistors for online learning. Applied Physics Letters, 119(13), pp. 133701-1–133701-6.10.1063/5.0064860CrossRefGoogle Scholar
Agrawal, A., Chakraborty, I., Roy, D., Saxena, U., Sharmin, S., Koo, M., Shim, Y., Srinivasan, G., Liyanagedera, C., Sengupta, A. and Roy, K., 2020. Revisiting stochastic computing in the era of nanoscale nonvolatile technologies. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(12), pp. 2481–2494.CrossRefGoogle Scholar
Schmitt, S., Klähn, J., Bellec, G., Grübl, A., Guettler, M., Hartel, A., Hartmann, S., Husmann, D., Husmann, K., Jeltsch, S. and Karasenko, V., 2017, May. Neuromorphic hardware in the loop: Training a deep spiking network on the BrainScaleS wafer-scale system. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 2227–2234). IEEE.10.1109/IJCNN.2017.7966125CrossRefGoogle Scholar
Sengupta, A. and Roy, K., 2016. Short-term plasticity and long-term potentiation in magnetic tunnel junctions: Towards volatile synapses. Physical Review Applied, 5(2), p. 024012.10.1103/PhysRevApplied.5.024012CrossRefGoogle Scholar
Jeong, D. S., Kim, I., Ziegler, M. and Kohlstedt, H., 2013. Towards artificial neurons and synapses: A materials point of view. RSC Advances, 3(10), pp. 3169–3183.Google Scholar
Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J. K. and Aono, M., 2011. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nature Materials, 10(8), pp. 591–595.CrossRefGoogle ScholarPubMed
Du, C., Ma, W., Chang, T., Sheridan, P. and Lu, W. D., 2015. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Advanced Functional Materials, 25(27), pp. 4290–4299.CrossRefGoogle Scholar
Kim, S. G., Han, J. S., Kim, H., Kim, S. Y. and Jang, H. W., 2018. Recent advances in memristive materials for artificial synapses. Advanced Materials Technologies, 3(12), p. 1800457.10.1002/admt.201800457CrossRefGoogle Scholar
Ielmini, D. and Waser, R. eds., 2015. Resistive switching: From fundamentals of nanoionic redox processes to memristive device applications. Weinheim: John Wiley & Sons.Google Scholar
Wang, Z., Joshi, S., Savel’ev, S. E., Jiang, H., Midya, R., Lin, P., Hu, M., Ge, N., Strachan, J. P., Li, Z. and Wu, Q., 2017. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nature Materials, 16(1), pp. 101–108.10.1038/nmat4756CrossRefGoogle ScholarPubMed
Chanthbouala, A., Garcia, V., Cherifi, R. O., Bouzehouane, K., Fusil, S., Moya, X., Xavier, S., Yamada, H., Deranlot, C., Mathur, N. D. and Bibes, M., 2012. A ferroelectric memristor. Nature Materials, 11(10), pp. 860–864.CrossRefGoogle ScholarPubMed
Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U. and Böttger, U. J. A. P. L., 2011. Ferroelectricity in hafnium oxide thin films. Applied Physics Letters, 99(10), pp. 102903-1–102903-3.10.1063/1.3634052CrossRefGoogle Scholar
Max, B., Hoffmann, M., Mulaosmanovic, H., Slesazeck, S. and Mikolajick, T., 2020. Hafnia-based double-layer ferroelectric tunnel junctions as artificial synapses for neuromorphic computing. ACS Applied Electronic Materials, 2(12), pp. 4023–4033.CrossRefGoogle Scholar
Wei, Y., Vats, G. and Noheda, B., 2022. Synaptic behaviour in ferroelectric epitaxial rhombohedral Hf0.5Zr0.5O2 thin films. Neuromorphic Computing and Engineering, 2(4), p. 044007.10.1088/2634-4386/ac970cCrossRefGoogle Scholar
Mulaosmanovic, H., Ocker, J., Müller, S., Noack, M., Müller, J., Polakowski, P., Mikolajick, T. and Slesazeck, S., 2017, June. Novel ferroelectric FET based synapse for neuromorphic systems. In 2017 Symposium on VLSI Technology (pp. T176–T177). IEEE.CrossRefGoogle Scholar
Majumdar, S., Tan, H., Qin, Q. H. and van Dijken, S., 2019. Energy‐efficient organic ferroelectric tunnel junction memristors for neuromorphic computing. Advanced Electronic Materials, 5(3), p. 1800795.10.1002/aelm.201800795CrossRefGoogle Scholar
Thakoor, S., Moopenn, A., Daud, T. and Thakoor, A. P., 1990. Solid‐state thin‐film memistor for electronic neural networks. Journal of Applied Physics, 67(6), pp. 3132–3135.10.1063/1.345390CrossRefGoogle Scholar
Yang, J. T., Ge, C., Du, J. Y., Huang, H. Y., He, M., Wang, C., Lu, H. B., Yang, G. Z. and Jin, K. J., 2018. Artificial synapses emulated by an electrolyte‐gated tungsten‐oxide transistor. Advanced Materials, 30(34), p. 1801548.CrossRefGoogle Scholar
Yang, Z., Zhou, Y. and Ramanathan, S., 2012. Studies on room-temperature electric-field effect in ionic-liquid gated VO2 three-terminal devices. Journal of Applied Physics, 111(1), pp. 014506-1–014506-5.Google Scholar
Zhou, Y. and Ramanathan, S., 2012. Relaxation dynamics of ionic liquid – VO2 interfaces and influence in electric double-layer transistors. Journal of Applied Physics, 111(8), pp. 084508-1–084508-7.CrossRefGoogle Scholar
Oh, C., Kim, I., Park, J., Park, Y., Choi, M. and Son, J., 2021. Deep proton insertion assisted by oxygen vacancies for long‐term memory in VO2 synaptic transistor. Advanced Electronic Materials, 7(2), p. 2000802.CrossRefGoogle Scholar
Zhang, H. T., Park, T. J., Zaluzhnyy, I. A., Wang, Q., Wadekar, S. N., Manna, S., Andrawis, R., Sprau, P. O., Sun, Y., Zhang, Z. and Huang, C., 2020. Perovskite neural trees. Nature Communications, 11(1), p. 2245.Google ScholarPubMed
Shi, J., Ha, S. D., Zhou, Y., Schoofs, F. and Ramanathan, S., 2013. A correlated nickelate synaptic transistor. Nature Communications, 4(1), p. 2676.10.1038/ncomms3676CrossRefGoogle ScholarPubMed
Ha, S. D., Shi, J., Meroz, Y., Mahadevan, L. and Ramanathan, S., 2014. Neuromimetic circuits with synaptic devices based on strongly correlated electron systems. Physical Review Applied, 2(6), p. 064003.10.1103/PhysRevApplied.2.064003CrossRefGoogle Scholar
Du, H., Lin, X., Xu, Z. and Chu, D., 2015. Electric double-layer transistors: A review of recent progress. Journal of Materials Science, 50, pp. 5641–5673.CrossRefGoogle Scholar
Maass, W. and Zador, A., 1997. Dynamic stochastic synapses as computational units. Advances in Neural Information Processing Systems, 10, pp. 194–200.Google Scholar
Neftci, E. O., Pedroni, B. U., Joshi, S., Al-Shedivat, M. and Cauwenberghs, G., 2016. Stochastic synapses enable efficient brain-inspired learning machines. Frontiers in Neuroscience, 10, p. 241.10.3389/fnins.2016.00241CrossRefGoogle ScholarPubMed
Erokhin, V., 2022. Fundamentals of organic neuromorphic systems. Cham: Springer International Publishing.10.1007/978-3-030-79492-7CrossRefGoogle Scholar
Feofilova, E. P. and Mysyakina, I. S., 2016. Lignin: Chemical structure, biodegradation, and practical application (a review). Applied Biochemistry and Microbiology, 52, pp. 573–581.10.1134/S0003683816060053CrossRefGoogle Scholar
Park, Y. and Lee, J. S., 2017. Artificial synapses with short- and long-term memory for spiking neural networks based on renewable materials. ACS Nano, 11(9), pp. 8962–8969.10.1021/acsnano.7b03347CrossRefGoogle Scholar
Jang, B. C., Kim, S., Yang, S. Y., Park, J., Cha, J. H., Oh, J., Choi, J., Im, S. G., Dravid, V. P. and Choi, S. Y., 2019. Polymer analog memristive synapse with atomic-scale conductive filament for flexible neuromorphic computing system. Nano Letters, 19(2), pp. 839–849.10.1021/acs.nanolett.8b04023CrossRefGoogle ScholarPubMed
Ren, Y., Yang, J. Q., Zhou, L., Mao, J. Y., Zhang, S. R., Zhou, Y. and Han, S. T., 2018. Gate‐tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites. Advanced Functional Materials, 28(50), p. 1805599.Google Scholar
Gkoupidenis, P., Schaefer, N., Garlan, B. and Malliaras, G. G., 2015. Neuromorphic functions in PEDOT: PSS organic electrochemical transistors. Advanced Materials, 44(27), pp. 7176–7180.Google Scholar
van De Burgt, Y., Melianas, A., Keene, S. T., Malliaras, G. and Salleo, A., 2018. Organic electronics for neuromorphic computing. Nature Electronics, 1(7), pp. 386–397.10.1038/s41928-018-0103-3CrossRefGoogle Scholar
Lee, Y., Park, H. L., Kim, Y. and Lee, T. W., 2021. Organic electronic synapses with low energy consumption. Joule, 5(4), pp. 794–810.10.1016/j.joule.2021.01.005CrossRefGoogle Scholar
Pecqueur, S., Vuillaume, D. and Alibart, F., 2018. Perspective: Organic electronic materials and devices for neuromorphic engineering. Journal of Applied Physics, 124(15), pp. 151902-1–151902-11.CrossRefGoogle Scholar
Lee, G., Baek, J. H., Ren, F., Pearton, S. J., Lee, G. H. and Kim, J., 2021. Artificial neuron and synapse devices based on 2D materials. Small, 17(20), p. 2100640.Google ScholarPubMed
Shi, Y., Liang, X., Yuan, B., Chen, V., Li, H., Hui, F., Yu, Z., Yuan, F., Pop, E., Wong, H. S. P. and Lanza, M., 2018. Electronic synapses made of layered two-dimensional materials. Nature Electronics, 1(8), pp. 458–465.10.1038/s41928-018-0118-9CrossRefGoogle Scholar
Krishnaprasad, A., Dev, D., Han, S. S., Shen, Y., Chung, H. S., Bae, T. S., Yoo, C., Jung, Y., Lanza, M. and Roy, T., 2022. MoS2 synapses with ultra-low variability and their implementation in Boolean logic. ACS Nano, 16(2), pp. 2866–2876.10.1021/acsnano.1c09904CrossRefGoogle ScholarPubMed
Chen, Y., Zhou, Y., Zhuge, F., Tian, B., Yan, M., Li, Y., He, Y. and Miao, X. S., 2019. Graphene–ferroelectric transistors as complementary synapses for supervised learning in spiking neural network. npj 2D Materials and Applications, 3(1), p. 31.CrossRefGoogle Scholar
Li, B., Li, S., Wang, H., Chen, L., Liu, L., Feng, X., Li, Y., Chen, J., Gong, X. and Ang, K. W., 2020. An electronic synapse based on 2D ferroelectric CuInP2S6. Advanced Electronic Materials, 6(12), p. 2000760.10.1002/aelm.202000760CrossRefGoogle Scholar
Zhu, X., Li, D., Liang, X. and Lu, W. D., 2019. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nature Materials, 18(2), pp. 141–148.10.1038/s41563-018-0248-5CrossRefGoogle ScholarPubMed
Wang, Y., Yang, Y., He, Z., Zhu, H., Chen, L., Sun, Q. and Zhang, D. W., 2020. Laterally coupled 2D MoS2 synaptic transistor with ion gating. IEEE Electron Device Letters, 41(9), pp. 1424–1427.10.1109/LED.2020.3008728CrossRefGoogle Scholar
Sun, L., Zhang, Y., Hwang, G., Jiang, J., Kim, D., Eshete, Y. A., Zhao, R. and Yang, H., 2018. Synaptic computation enabled by joule heating of single-layered semiconductors for sound localization. Nano Letters, 18(5), pp. 3229–3234.CrossRefGoogle ScholarPubMed
Cao, G., Meng, P., Chen, J., Liu, H., Bian, R., Zhu, C., Liu, F. and Liu, Z., 2021. 2D material based synaptic devices for neuromorphic computing. Advanced Functional Materials, 31(4), p. 2005443.Google Scholar
Huh, W., Lee, D. and Lee, C. H., 2020. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Advanced Materials, 32(51), p. 2002092.10.1002/adma.202002092CrossRefGoogle Scholar
Sengupta, A. and Roy, K., 2018. Neuromorphic computing enabled by physics of electron spins: Prospects and perspectives. Applied Physics Express, 11(3), p. 030101.CrossRefGoogle Scholar
Fong, X., Kim, Y., Venkatesan, R., Choday, S. H., Raghunathan, A. and Roy, K., 2016. Spin-transfer torque memories: Devices, circuits, and systems. Proceedings of the IEEE, 104(7), pp. 1449–1488.10.1109/JPROC.2016.2521712CrossRefGoogle Scholar
Amiri, P. K. and Wang, K. L., 2012. Voltage-controlled magnetic anisotropy in spintronic devices. Spin, 2(3), p. 1240002.10.1142/S2010324712400024CrossRefGoogle Scholar
Hirsch, J. E., 1999. Spin hall effect. Physical Review Letters, 83(9), p. 1834.10.1103/PhysRevLett.83.1834CrossRefGoogle Scholar
Sengupta, A., Banerjee, A. and Roy, K., 2016. Hybrid spintronic-CMOS spiking neural network with on-chip learning: Devices, circuits, and systems. Physical Review Applied, 6(6), p. 064003.CrossRefGoogle Scholar
Emori, S., Bauer, U., Ahn, S. M., Martinez, E. and Beach, G. S., 2013. Current-driven dynamics of chiral ferromagnetic domain walls. Nature Materials, 12(7), pp. 611–616.10.1038/nmat3675CrossRefGoogle ScholarPubMed
Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. and Ohno, H., 2016. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nature Materials, 15(5), pp. 535–541.CrossRefGoogle Scholar
Borders, W. A., Akima, H., Fukami, S., Moriya, S., Kurihara, S., Horio, Y., Sato, S. and Ohno, H., 2016. Analogue spin–orbit torque device for artificial-neural-network-based associative memory operation. Applied Physics Express, 10(1), p. 013007.Google Scholar
Sengupta, A. and Roy, K., 2016. Short-term plasticity and long-term potentiation in magnetic tunnel junctions: Towards volatile synapses. Physical Review Applied, 5(2), p. 024012.10.1103/PhysRevApplied.5.024012CrossRefGoogle Scholar
Song, K. M., Jeong, J. S., Pan, B., Zhang, X., Xia, J., Cha, S., Park, T. E., Kim, K., Finizio, S., Raabe, J. and Chang, J., 2020. Skyrmion-based artificial synapses for neuromorphic computing. Nature Electronics, 3(3), pp. 148–155.10.1038/s41928-020-0385-0CrossRefGoogle Scholar
Sengupta, A. and Roy, K., 2017. Encoding neural and synaptic functionalities in electron spin: A pathway to efficient neuromorphic computing. Applied Physics Reviews, 4(4), pp. 041105-1–041105-23.10.1063/1.5012763CrossRefGoogle Scholar
Kurenkov, A., Fukami, S. and Ohno, H., 2020. Neuromorphic computing with antiferromagnetic spintronics. Journal of Applied Physics, 128(1), pp. 010902-1–010902-12.10.1063/5.0009482CrossRefGoogle Scholar
Goodwill, J. M., Prasad, N., Hoskins, B. D., Daniels, M. W., Madhavan, A., Wan, L., Santos, T. S., Tran, M., Katine, J. A., Braganca, P. M. and Stiles, M. D., 2022. Implementation of a binary neural network on a passive array of magnetic tunnel junctions. Physical Review Applied, 18(1), p. 014039.10.1103/PhysRevApplied.18.014039CrossRefGoogle Scholar
Borders, W. A., Pervaiz, A. Z., Fukami, S., Camsari, K. Y., Ohno, H. and Datta, S., 2019. Integer factorization using stochastic magnetic tunnel junctions. Nature, 573(7774), pp. 390–393.CrossRefGoogle ScholarPubMed
Youngblood, N., Ríos Ocampo, C. A., Pernice, W. H. and Bhaskaran, H., 2023. Integrated optical memristors. Nature Photonics, 17(7), pp. 561–572.10.1038/s41566-023-01217-wCrossRefGoogle Scholar
Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Morthier, G., Verstraeten, D., Schrauwen, B., Dambre, J. and Bienstman, P., 2014. Experimental demonstration of reservoir computing on a silicon photonics chip. Nature Communications, 5(1), p. 3541.10.1038/ncomms4541CrossRefGoogle ScholarPubMed
Tait, A. N., Nahmias, M. A., Shastri, B. J. and Prucnal, P. R., 2014. Broadcast and weight: An integrated network for scalable photonic spike processing. Journal of Lightwave Technology, 32(21), pp. 3427–3439.CrossRefGoogle Scholar
Cheng, Z., Ríos, C., Pernice, W. H., Wright, C. D. and Bhaskaran, H., 2017. On-chip photonic synapse. Science Advances, 3(9), p. e1700160.10.1126/sciadv.1700160CrossRefGoogle ScholarPubMed
Ríos, C., Youngblood, N., Cheng, Z., Le Gallo, M., Pernice, W. H., Wright, C. D., Sebastian, A. and Bhaskaran, H., 2019. In-memory computing on a photonic platform. Science Advances, 5(2), p. eaau5759.10.1126/sciadv.aau5759CrossRefGoogle ScholarPubMed
Stegmaier, M., Ríos, C., Bhaskaran, H., Wright, C. D. and Pernice, W. H., 2017. Nonvolatile all‐optical 1 × 2 switch for chipscale photonic networks. Advanced Optical Materials, 5(1), p. 1600346.10.1002/adom.201600346CrossRefGoogle Scholar
Chakraborty, I., Saha, G. and Roy, K., 2019. Photonic in-memory computing primitive for spiking neural networks using phase-change materials. Physical Review Applied, 11(1), p. 014063.10.1103/PhysRevApplied.11.014063CrossRefGoogle Scholar

Accessibility standard: WCAG 2.2 A

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×