from Part VI - Kernel methods for green machine learning technologies
Published online by Cambridge University Press: 05 July 2014
Introduction
Since the invention of integrated circuits in the 1950s, processing gates and memory storages on a chip have grown at an exponential rate. Major breakthroughs in wireless and internet technologies have further promoted novel information technologies (IT). New applications, such as cloud computing and green computing, will undoubtedly have profound impacts on everyone's daily life.
Machine learning will play a vital part in modern information technology, especially in the era of big data analysis. For the design of kernel-based machine learning systems, it is important to find suitable kernel functions that lead to an optimal tradeoff between design freedom and computational complexity, which involves very often a choice between the intrinsic-space and empirical-space learning models.
A successful deployment of a machine learning system hinges upon a well-coordinated co-design of algorithm and hardware. This chapter addresses practical design issues related to cost-effective learning or low-power prediction that are vital for green IT applications.
This chapter addresses the following topics concerning cost-effective system implementations both in the learning phase and in the prediction phase.
(i) In the internet-based IT era, a system designer must first decide where to process the bulk of the information: a local/private client (e.g. a mobile device) or a data center (e.g. “the cloud”). Section 13.2 addresses the pros and cons of both options. The choice of strategy depends on a delicate tradeoff between the computation and communication costs, among many other system design factors.[…]
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.