Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-30T05:25:22.946Z Has data issue: false hasContentIssue false

1 - History and fundamentals of LIBS

Published online by Cambridge University Press:  08 August 2009

David A. Cremers
Affiliation:
Chemistry Division, Los Alamos National Laboratory
Leon J. Radziemski
Affiliation:
Physics Department, Washington State University
Andrzej W. Miziolek
Affiliation:
U.S. Army Research Laboratory, USA
Vincenzo Palleschi
Affiliation:
Istituto per I Processi Chimico-Fisici, Italy
Israel Schechter
Affiliation:
Technion - Israel Institute of Technology, Haifa
Get access

Summary

Introduction

Laser-induced breakdown spectroscopy (LIBS) is a method of atomic emission spectroscopy (AES) that uses a laser-generated plasma as the hot vaporization, atomization, and excitation source. Because the plasma is formed by focused optical radiation, the method has many advantages over conventional AES techniques that use an adjacent physical device (e.g. electrodes, coils) to form the vaporization/excitation source. Foremost of these is the ability to interrogate samples in situ and remotely without any preparation. In its basic form, a LIBS measurement is carried out by forming a laser plasma on or in the sample and then collecting and spectrally analyzing the plasma light. Qualitative and quantitative analyses are carried out by monitoring emission line positions and intensities. Although the LIBS method has been in existence for 40 years, prior to 1980, interest in it centered mainly on the basic physics of plasma formation. Since then the analytical capabilities have become more evident. A few instruments based on LIBS have been developed but have not found widespread use. Recently, however, there has been renewed interest in the method for a wide range of applications. This has mainly been the result of significant technological developments in the components (lasers, spectrographs, detectors) used in LIBS instruments as well as emerging needs to perform measurements under conditions not feasible with conventional analytical techniques. A review of LIBS literature shows that the method has a detection sensitivity for many elements that is comparable to or exceeds that characteristic of other field-deployable methods.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Silverberg, R. and Greenberg, M. H., eds., Murasaki (New York: Bantam Books, 1993)Google Scholar
Knight, A. K., Scherbarth, N. L., Cremers, D. A. and Ferris, M. J., Appl. Spectrosc., 54 (2000), 331–340CrossRef
Cremers, D. A. and Radziemski, L. J., Laser Spectroscopy and its Applications, chapter 5 (New York: Marcel Dekker, 1987)Google Scholar
Radziemski, L. J. and Cremers, D. A., Laser-Induced Plasmas and Applications, chapter 7(New York: Marcel Dekker, 1989)Google Scholar
Moenke-Blankenburg, L., Laser Micro Analysis (New York: John Wiley, 1989)Google Scholar
Rusak, D. A., Castle, B. C., Smith, B. W. and Winefordner, J. D., CRC Crit. Rev. Anal. Chem., 27 (1997), 257–290CrossRef
Song, K., Lee, Y.-I. and Sneddon, J., J. Appl. Spectrosc. Rev., 37 (2002), 89–117CrossRef
Tognoni, E., Palleschi, V., Corsi, M. and Cristoforetti, G., Spectrochim. Acta, B57 (2002), 1115–1130CrossRef
Moenke, H. and Moenke-Blankenburg, L., Laser Micro-Spectrochemical Analysis (New York: Crane, Russak, 1973)Google Scholar
Reader, J. and Corliss, C. H., Wavelengths and Transition Probabilities for Atoms and Atomic Ions Part II. Transition Probabilities, NSRDS-NSB 68 (Washington, DC: US Government Printing Office, 1980)Google Scholar
Striganov, A. R. and Sventitskii, N. S., Tables of Spectral Lines of Neutral and Ionized Atoms (New York: IFI/Plenum, 1968)CrossRefGoogle Scholar
Payling, R. and Larkins, P., Optical Emission Lines of the Elements (Chichester: John Wiley, 2000)Google Scholar
Kirchhoff, G. and Bunsen, R., Chemische Analyse durch Spectralbeobachtungen (Wien: Verl. Fabrik u. handlung, 1860)Google Scholar
Gaydon, A. G., The Spectroscopy of Flames (New York: John Wiley, 1957)Google Scholar
Torok, T., Mika, J. M. and Gegus, E., Emission Spectrochemical Analysis (Bristol: Adam Hilger, 1978)Google Scholar
Razier, Yu P., Laser-Induced Discharge Phenomena (New York: Consultants Bureau, 1977)Google Scholar
Radziemski, L. J., Spectrochim. Acta, B57 (2002), 1109–1113CrossRef
Brech, F. and Cross, L., Appl. Spectrosc., 16 (1962), 59
Weyl, G. M., Laser-Induced Plasmas and Applications, chapter 1 (New York: Marcel Dekker, 1989)Google Scholar
Hughes, T. P., Plasmas and Laser Light (New York: John Wiley, 1975)Google Scholar
Root, R. G., Laser-Induced Plasmas and Applications, chapter 2 (New York: Marcel Dekker, 1989)Google Scholar
Griem, H. R., Principles of Plasma Spectroscopy (New York: Cambridge University Press, 1984)Google Scholar
Simeonsson, J. B. and Miziolek, A. W., J. Appl. Phys. B, 59 (1994), 1–9CrossRef
Radziemski, L. J., Cremers, D. A. and Niemczyk, T. M., Spectrochim. Acta, B40 (1985), 517–525CrossRef
Mazhukin, I. V., Gusev, I. V., Smurov, I. and Flamant, G., Microchem. J., 50 (1994), 413–433CrossRef
Wachter, J. R. and Cremers, D. A., Appl. Spectrosc., 41 (1987), 1042–1048CrossRef
Archontaki, H. A. and Crouch, S. R., Appl. Spectrosc., 42 (1988), 741–746CrossRef
Cremers, D. A., Radziemski, L. J. and Loree, T. R., Appl. Spectrosc., 38 (1984), 721–729CrossRef
Borisov, O. V., Mao, X. and Russo, R. E., Spectrochim. Acta, B55 (2000), 1693–1704CrossRef
Shannon, M. A., Appl. Surf. Sci., 127–129 (1998), 218–225CrossRef
Alexander, D. R., Laser Induced Plasma Spectroscopy and Applications Technical Digest, Opt. Soc. Am. (2002), pp. 164–165
Nyga, R. and Neu, W., Opt. Lett., 18 (1993), 747–749CrossRef
Pichahchy, A. E., Cremers, D. A. and Ferris, M. J., Spectrochim. Acta, B52 (1997), 25–39CrossRef
Davies, C. M., Telle, H. H., Montgomery, D. J. and Corbett, R. E., Spectrochim. Acta, B50 (1995), 1059–1075CrossRef
Cremers, D. A., Barefield, J. E. and Koskelo, A. C., Appl. Spectrosc., 49 (1995), 857–860CrossRef
Yamamoto, K. Y., Cremers, D. A., Foster, L. E. and Ferris, M. J., Appl. Spectrosc., 50 (1996), 222–233CrossRef
Cremers, D. A., Appl. Spectrosc., 41 (1987), 572–579CrossRef
Pang, H. M., Wiederin, D. R., Houk, R. S. and Yeung, E. S., Anal. Chem., 63 (1991), 390–394CrossRef
Chaléard, C., Mauchien, P., André, N., Uebbing, J., Lacour, J. L. and Geertsen, C. J., Anal. Atom. Spectrom., 12 (1997), 183–188CrossRef
Theriault, G. A., Bodensteiner, S. and Lieberman, S. H., Field Anal. Chem. Technol., 2 (1998), 117–1253.0.CO;2-T>CrossRef
Eppler, A. S., Cremers, D. A., Hickmott, D. D. and Koskelo, A. C., Appl. Spectrosc., 50 (1996), 1175–1181CrossRef
Multari, R. A., Foster, L. E., Cremers, D. A. and Ferris, M. J., Appl. Spectrosc., 50 (1996), 1483–1499CrossRef
American National Standard for the Safe Use of Lasers ANSI Standard ANSI Z136.1, American National Standards Institute (most recent issue)
Ciucci, A., Corsi, M., et al., Appl. Spectrosc., 53 (1999), 960–964CrossRef
Ciucci, A., Palleschi, V., Rastelli, S., Las. Part. Beams, 17 (1999), 793–797
Goode, S. R., Hoskins, R. and Morgan, S., Laser Induced Plasma Spectroscopy and Applications Technical Digest, Opt. Soc. Am. (2002), pp. 36–38
Measures, R. M. and Kwong, H. S., Appl. Opt., 18 (1979), 281–286CrossRef
Niemax, K. and Sdorra, W., Appl. Opt., 29 (1990), 5000–5006CrossRef
Hilbk-Kortenbruck, F., Noll, R., Wintjens, P., Falk, H. and Becker, C., Spectrochim. Acta, B56 (2001), 933–945CrossRef
Gobernado-Mitre, I., Prieto, A. C., Zafiropulos, V., Spetsidou, Y. and Fotakis, C., Appl. Spectrosc., 51 (1997), 1125–1129CrossRef
Peslak, W. C. and Piepmeier, E. H., Microchem. J., 50 (1994), 253–280CrossRef
Adrain, R. S. and Watson, J., J. Phys. D., Appl. Phys., 17 (1984), 1915–1940CrossRef
Cremers, D. A., Ferris, M. J. and Davies, M., SPIE, 2835 (1996), 190–200
Koebner, H. (editor), Industrial Applications of Lasers, chapter 7 (Chichester: John Wiley, 1984)Google Scholar
Lorenzen, C. J., Carlhoff, C., Hahn, U. and Jogwich, M., J. Anal. At. Spectrom., 7 (1992), 1029–1035CrossRef
Miles, B. and Cortes, J., Field Anal. Chem. Techol., 2 (1998), 75–873.0.CO;2-D>CrossRef
Bauer, H. E., Leis, F. and Niemax, K., Spectrochim. Acta, B53 (1998), 1815–1825CrossRef
Photonics Design and Applications Handbook, Book 3 (Pittsfield, MA: Laurin Publishing Company, 1997)
Talmi, Y. (editor), Multichannel Image Detectors, ACS Symp. Series No. 102 (Washington, DC: ACS, 1979)CrossRefGoogle Scholar
D. A. Cremers and L. J. Radziemski,unpublished results
Kurniawan, H., Nakajima, S., Batubara, J. E., et al., Appl. Spectrosc., 49 (1995), 1067–1072CrossRefGoogle Scholar
Radziemski, L. J., Loree, T. R., Cremers, D. A. and Hoffman, N. M., Anal. Chem., 55 (1983), 1246–1252CrossRef
Grant, K., Paul, G. L. and Neill, J. A., Appl. Spectrosc., 45 (1991), 701–705CrossRef
Neuhauser, R. E., Panne, U. and Niessner, R., Anal. Chim. Acta, 392 (1999), 47–54CrossRef
Knopp, R., Scherbaum, F. J. and Kim, J. I., Fres. J. Anal. Chem., 355 (1996), 16–20CrossRef
Aguilera, J. A., Aragon, C. and Penalba, F., Appl. Surf. Sci., 127–129 (1998), 309–314CrossRef
Dudragne, L., Adam, Ph. and Amouroux, J., Appl. Spectrosc., 52 (1998), 1321–1327CrossRef
Cremers, D. A. and Radziemski, L. J., Anal. Chem, 55 (1983), 1252–1256CrossRef
Haisch, C., Niessner, R., Matveev, O. I., Panne, U. and Omenetto, N., Fres. J. Anal. Chem., 356 (1996), 21–26CrossRef
Paksy, L., Német, B., Lengyel, A., Kozma, L. and Czekkel, J., Spectrochim. Acta, B51 (1996), 279–290CrossRef
Wisbrun, R., Schechter, I., Niessner, R. and Kompa, K. L., Anal. Chem., 66 (1994), 2964–2975CrossRef
Capitelli, F., Colao, F., Provenzano, M. R., et al., Geoderma, 106 (2002), 45–62CrossRef
Sabsabi, M. and Cielo, P., Appl. Spectrosc., 49 (1995), 499–507CrossRef
Lazzari, C., Rosa, M., Rastelli, S., et al., Las. Part. Beams, 12 (1994), 525–530CrossRef
Arnold, S. D. and Cremers, D. A., Am. Ind. Hyg. Assoc. J., 56 (1995), 1180–1186CrossRef
Pakhomov, A. V., Nichols, W. and Borysow, J., Appl. Spectrosc., 50 (1996), 880–884CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×