Published online by Cambridge University Press: 05 January 2012
Introduction
Protein synthesis is a central process for living entities. In all kingdoms of life, the key component of this process is the ribosome, a large macromolecular assembly composed of two distinctly sized subunits, whose cores are largely composed of ribosomal RNA, or rRNA. This molecular machine mediates the sequential incorporation of amino acids carried by the transfer RNAs (tRNAs) into the nascent protein chain. This process is also known as translation, because the genetic message encoded in the messenger RNA (mRNA) is deciphered into the language of proteins (Figure 7.1).
The functional complexity of molecular machines such as the ribosome is coupled to their structural intricacy. Whereas initial imaging by electron microscopy showed nothing but dense granules ∼200Å in diameter (Palade, 1955), decades later the development of cryo-electron microscopy (cryo-EM), combined with image processing methodology, brought evidence for the extreme complexity of the ribosome with its multiple mobile and flexible parts. Recently, as the quality of electron density maps has greatly improved thanks to methodological advances in this field (see Chapter 2 in this volume by Joachim Frank), new intermediate states have been observed and the dynamic behavior of the ribosome and its ligands has been further characterized in conjunction with other biophysical techniques such as X-ray crystallography, kinetic analysis, and single-molecule fluorescent resonance energy transfer (smFRET) (see Figure 7.2). Considering that the 3D reconstructions obtained by cryo-EM are snapshots representing functional states along the translation pathway, it is now widely acknowledged that this experimental approach has been indispensable in unraveling essential processes that cooperate in translation. Furthermore, many structural insights that have come from cryo-EM work currently drive experimental design in a wide range of studies of the ribosome, from biochemical to crystallographic studies and single-molecule FRET.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.