from IV - X-rays and Accretion Disks
Published online by Cambridge University Press: 04 August 2010
Abstract
Luminous accretion discs around black holes are expected to be optically thick and radiate much of their emission in the EUV and soft X-ray bands. Quasiblackbody emission consistent with such discs is observed in many Seyfert 1 galaxies and from Galactic black hole candidates such as Cygnus X-1. The harder, rapidly variable, X-rays from such objects must originate above the disc, probably from non-thermal processes involving magnetic fields. The disc is therefore irradiated by a hard X-ray continuum. Backscattering and fluorescence from the disc produce a reflection spectrum, which is now observed in X-rays. Features in the reflection spectrum act as a diagnostic of the geometry and conditions of the inner disc, offering the strong possibility that it can be mapped in the near future.
Introduction
We begin by reviewing the case for the presence of accretion discs in many Active Galactic Nuclei (AGN), such as the Seyfert 1 galaxies. Here we are concentrating on the inner disc within radii R ≲ 100Rs, where Rs is the Schwarzschild radius of the central object (assumed here to be a black hole). Such discs were first detected from the UV excess and in particular by the variable soft X-ray emission that they produce. Further rapid progress has been hindered by the unfortunate coincidence that most of the direct thermal radiation produced by accretion discs around massive objects is emitted in the EUV, where photoelectric absorption by the interstellar medium of our Galaxy is strong.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.