Ecommerce will be unavailable on Cambridge Core for approximately one hour from 18:00 (UK time) on Thursday 29th September - we apologise for any inconvenience.
Published online by Cambridge University Press: 05 July 2014
Abstract
We discuss the design of a typed lambda calculus for quantum computation. After a brief discussion of the role of higher-order functions in quantum information theory, we define the quantum lambda calculus and its operational semantics. Safety invariants, such as the no-cloning property, are enforced by a static type system that is based on intuitionistic linear logic. We also describe a type inference algorithm and a categorical semantics.
4.1 Introduction
The lambda calculus, developed in the 1930s by Church and Curry, is a formalism for expressing higher-order functions. In a nutshell, a higher-order function is a function that inputs or outputs a “black box,” which is itself a (possibly higher-order) function. Higher-order functions are a computationally powerful tool. Indeed, the pure untyped lambda calculus has the same computational power as Turing machines (Turing 1937). At the same time, higher-order functions are a useful abstraction for programmers. They form the basis of functional programming languages such as LISP (McCarthy 1960), Scheme (Sussman and Steele 1975), ML (Milner 1978), and Haskell (Hudak et al. 2007).
In this chapter, we discuss how to combine higher-order functions with quantum computation. We believe that this is an interesting question for a number of reasons. First, the combination of higher-order functions with quantum phenomena raises the prospect of entangled functions. Certain well-known quantum phenomena can be naturally described in terms of entangled functions, and we give some examples of this in Section 4.2.
To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.