Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-b57wx Total loading time: 0 Render date: 2026-01-08T12:06:21.877Z Has data issue: false hasContentIssue false

References: Articles

Published online by Cambridge University Press:  27 December 2025

Alberto Debernardi Pinos
Affiliation:
Universitat Autònoma de Barcelona
Elijah Liflyand
Affiliation:
Bar-Ilan University, Israel
Sergey Tikhonov
Affiliation:
Centre de Recerca Matemàtica, Barcelona
Maria Zeltser
Affiliation:
Tallinn University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2026

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abel, N. H., Untersuchungen über die reihe: , J. Reine Angew. Math. 1 (1826), 311339.Google Scholar
Abel, N. H., Note sur le mémoire de M. L. Olivier No. 4, du second tome de ce Journal, ajant pour titre “remarques sur les series infinies et leur convergence”, J. Reine Angew. Math. 3 (1828), 7982.Google Scholar
Abramov, V. M., Extension of the Bertrand–De Morgan test and its application, Am. Math. Mon. 127 (5) (2020), 444448.Google Scholar
Abramov, V. M., Necessary and sufficient conditions for the convergence of positive series, J. Class. Anal. 19 (2) (2021), 117125.Google Scholar
Abramov, V. M., Evaluating the sum of convergent positive series, Publ. Inst. Math., Nouv. Sér. 111 (2022), 4153.Google Scholar
Abramov, V., Cadena, M., and Omey, E., A new test for convergence of positive series, Publ. Inst. Math., Nouv. Sér. 109 (2021), 6176.Google Scholar
Abu-Mostafa, Y. S., A differentiation test for absolute convergence, Math. Mag. 57 (1984), 228231.Google Scholar
Adams, C. R. and Clarkson, J. A., Properties of functions f (x, y) of bounded variation, Trans. Amer. Math. Soc. 36 (1934), 711730.Google Scholar
Agnew, R. P., Ratio tests for convergence of series, Pac. J. Math. 1 (1951), 13.Google Scholar
Agnew, R. P., Permutations preserving convergence of series, Proc. Am. Math. Soc. 6 (1955), 563564.Google Scholar
Ali, S. A., The mth ratio test: new convergence tests for series, Am. Math. Mon. 115 (2008), 514524.Google Scholar
Allouche, J.-P. and Morin, C., Kempner-like harmonic series, Am. Math. Mon. 131 (2024), 775783.Google Scholar
Ambroladze, A., On spherical convergence of numerical and functional series, Vestn. Mosk. Univ., 1 (1) (1994), 3035 (Russian). English transl. in Moscow Univ. Math. Bull. 49 (1994), 25–28.Google Scholar
Amerio, L., Sulla convergenza delle serie doppie, Atti Accad. Italia, Rend., Cl. Sci. Fis. Mat. Natur., VII (2) (1941), 684698.Google Scholar
Arutyunyan, F. G., Representation of functions by multiple series, Dokl. Arm. Akad. Nauk 64 (2) (1977), 7276 (Russian).Google Scholar
Arutyunyan, F. G., Representation of measurable functions of several variables by multiple trigonometric series, Mat. Sb. 126 (2) (1985), 267285 (Russian). English transl. in Math. USSR-Sb 54 (1986), 259–277.Google Scholar
Asadullin, E. A., Determination of the region of convergence of multiple power series, Izv. Vyssh. Uchebn. Zaved. Matematika 11 (4) (1959), 2126 (Russian).Google Scholar
Asadullin, E. A., Tests for the convergence of multiple series with positive terms, Dokl. Akad. Nauk SSSR 136 (1961), 529531 (Russian). English transl. in Soviet Math. Dokl. 2 (1961), 86–88.Google Scholar
Ash, J. M., Neither a worst convergent series nor a best divergent series exists, College Math. J. 28 (1997), 296297.Google Scholar
Ash, J. M., The limit comparison test needs positivity, Math. Magazine 85 (2012), 374375.Google Scholar
Ash, J. M., Berele, A., and Catoui, S., Plausible and genuine extensions of L’Hospital’s rule, Math. Mag. 85 (2012), 5260.Google Scholar
Azevedo, D. and Andrade, T. P., Summability characterizations of positive sequences, Commun. Math. 30 (2022), 8190.Google Scholar
Babenko, K. I., Approximation by trigonometric polynomials in a certain class of periodic functions of several variables, Dokl. Akad. Nauk SSSR 132 (1960), 982985 (Russian). English transl. in Soviet Math. Dokl. 1 (1960), 672–675.Google Scholar
Bailey, W. N., On the convergence of a certain multiple series, Math. Proc. Cambridge Philos. Soc. 25 (4) (1929), 410411.Google Scholar
Baillie, R., Sums of reciprocals of integers missing a given digit, Am. Math. Mon. 86 (5) (1979), 372374.Google Scholar
Bakhbukh, M., Convergence of double series, Mat. Zametki 13 (1973), 341350 (Russian). English transl. in Math. Notes 13 (1973), 208–214.Google Scholar
Banakiewicz, M., Hanson, B., Pierce, P., and Prus-Wiśniowski, F., A Riemann-type theorem for segmentally alternating series, Bull. Iran. Math. Soc. 44 (5) (2018), 13031314.Google Scholar
Barbeau, E. J. and Leah, P. J., Euler’s 1760 paper on divergent series, Hist. Math. 3 (1976), 141160.Google Scholar
Batir, N., Remarks on Vălean’s master theorem of series, J. Class. Anal. 13 (2018), 7982.Google Scholar
Bell, J. and Blåsjö, V., Pietro Mengoli’s 1650 proof that the harmonic series diverges, Math. Mag. 91 (5) (2018), 341347.Google Scholar
Bello Hernández, M., Problem 438, Gac. R. Soc. Mat. Esp. 25 (2022), 112.Google Scholar
Bello Hernández, M., Solution to problem 438, Gac. R. Soc. Mat. Esp. 26 (2023), 125126.Google Scholar
Belov, A. S., Dyachenko, M. I., and Tikhonov, S. Yu., Functions with general monotone Fourier coefficients, Russ. Math. Surv. 76 (6) (2021), 9511017.Google Scholar
Bennett, C. and Rudnick, K., On Lorentz-Zygmund spaces, Diss. Math. 175 (1980), 67p.Google Scholar
Bernstein, S. N., On majorants of finite or quasi-finite growth, Doklady Akad. Nauk SSSR (N.S.) 65 (1949), 117120 (Russian).Google Scholar
Bil, R. and Laue, H., Investigations about the Euler-Mascheroni constant and harmonic numbers, Analysis (Berlin) 36 (4) (2016), 223230.Google Scholar
Boas, R. P. Jr., Partial sums of infinite series, and how they grow, Am. Math. Mon. 84 (1977), 237258.Google Scholar
Boas, R. P. Jr. and Wrench, J. W. Jr., Partial sums of the harmonic series, Am. Math. Mon. 78 (1971), 864870.Google Scholar
du Bois-Reymond, P., Eine neue Theorie der Convergenz und Divergenz von Reihen mit positiven Gliedern, J. Reine Angew. Math. 76 (1873), 6191.Google Scholar
Bojanic, R. and Seneta, E., A unified theory of regularly varying sequences, Math. Z. 134 (1973), 91106.Google Scholar
Booton, B., General monotone functions and their Fourier coefficients, J. Math. Anal. Appl. 426 (2) (2015), 805823.Google Scholar
Booton, B., Rearrangements of general monotone functions and of their Fourier transforms, Math. Inequal. Appl. 21 (3) (2018), 871883.Google Scholar
Borwein, D. and Borwein, J. M., A note on alternating series in several dimensions, Am. Math. Mon. 93 (1986), 531539.Google Scholar
Borwein, D. and Meir, A., Divergence criteria for positive series, Am. Math. Mon. 79 (1972), 11041106.Google Scholar
Brandolini, L., Colzani, L., Robins, S., and Travaglini, G., An Euler-Maclaurin formula for polygonal sums, Trans. Am. Math. Soc. 375 (2022), 151172.Google Scholar
Brasseur, J., On restrictions of Besov functions, Nonlin. Anal. 170 (2018), 197225.Google Scholar
Bray, H. E., Elementary properties of the Stieltjes integral, Ann. Math. (2) 20 (3) (1919), 177186.Google Scholar
Brighi, B. and Chevallier, N., Σ 1/n2+cos n, Revue de la filière Mathématique 119 (2008–2009), 38.Google Scholar
Brink, R. W., A new integral test for the convergence and divergence of infinite series, Trans. Amer. Math. Soc. 19 (2) (1918), 186204.Google Scholar
Brink, R. W., A simplified integral test for the convergence of infinite series, Am. Math. Mon. 38 (4) (1931), 205208.Google Scholar
Bromwich, T. J. I., The relation between the convergence of series and of integrals, Proc. London Math. Soc. (2) 6 (1908), 327338.Google Scholar
Bugaev (Bougaïev), N., Note relative à la théorie de la convergence des séries, Mat. Sb., 14 (2) (1889), 279282. Transl. from Russian: Mat. Sbornik, 14 (2) (1889), 279–282.Google Scholar
Burlachenko, V. P., Analogs of Leibnitz’s theorem for sign-alternating double series, Ukraïn. Mat. Zh. 19 (2) (1967), 310.Google Scholar
Byrnes, J. S., Giroux, A., and Shisha, O., Riemann sums and improper integrals of step functions related to the prime number theorem, J. Approx. Theory 40 (2) (1984), 180192.Google Scholar
Calabrese, P., A note on alternating series, Am. Math. Mon. 69 (3) (1962), 215217.Google Scholar
Cargo, G. T., Some extensions of the integral test, Am. Math. Mon. 73 (5) (1966), 521525.Google Scholar
Carrillo, S. A., Sum of alternating-like series as definite integrals, Int. J. Math. Educ. Sci. Technol. 53 (10) (2022), 28562866.Google Scholar
Chand, H., On some generalizations of Cauchy’s condensation and integral tests, Am. Math. Mon. 46 (1939), 338341.Google Scholar
Christianson, B., Condensing a slowly convergent series, Math. Mag. 68 (4) (1995), 298301.Google Scholar
Chunaev, P., Hölder and Minkowski type inequalities with alternating signs, J. Math. Inequal. 9 (2015), 6171.Google Scholar
Clarkson, J. A. and Adams, C. R., On definitions of bounded variation for functions of two variables, Trans. Amer. Math. Soc. 35 (1934), 824854.Google Scholar
Cohen, A. and DeVore, R., Approximation of high-dimensional parametric PDEs, Acta Numerica 24 (2015), 1159.Google Scholar
Cohen, A., DeVore, R., and Schwab, C., Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs, Anal. Appl. 9 (1) (2011), 1147.Google Scholar
Comtet, L., Problems and solutions: solutions of advanced problems: 5346, Am. Math. Mon. 74 (2) (1967), p. 209.Google Scholar
Coudène, Y., A strange inequality concerning alternating series, Am. Math. Mon. 125 (6), 554557.Google Scholar
Cruz-Uribe, D., The relation between the root and ratio tests, Math. Magazine 70 (3) (1997), 214215.Google Scholar
Cruz-Uribe, D., News and letters, Math. Magazine 70 (4) (1997), 310311.Google Scholar
d’Alembert, J., Réflexions sur les suites divergentes ou convergentes, Opuscules Mathématiques ou Mémoires sur différens sujets de géométrie, de méchanique, d’optique, d’astronomie 5 (1768), 171183.Google Scholar
De Carli, L., Gorbachev, D., and Tikhonov, S., Pitt and Boas inequalities for Fourier and Hankel transforms, J. Math. Anal. Appl. 408 (2) (2013), 762774.Google Scholar
de la Vallée-Poussin, C. J., Recherches analytiques sur la theorie des nombres premiers I–III, Ann. Soc. Sci. Bruxelles 20 (2) (1987), 183–256, 281–362, 363397.Google Scholar
Debernardi, A., Uniform convergence of double sine transforms of general monotone functions, Anal. Math. 43 (2) (2017), 193217.Google Scholar
Debernardi, A., Uniform convergence of sine integrals with general monotone functions, Math. Nachr. 290 (17–18) (2017), 28152825.Google Scholar
Debernardi, A., Hankel transforms of general monotone functions, Topics in Classical and Modern Analysis: In Memory of Yingkang Hu, Applied and Numerical Harmonic Analysis Series, Birkhäuser/Springer, Basel, 87–104, 2019.10.1007/978-3-030-12277-5_5CrossRefGoogle Scholar
Debernardi, A., The Boas problem on Hankel transforms, J. Fourier Anal. Appl. 25 (6) (2019), 33103341.Google Scholar
Debernardi, A., Weighted norm inequalities for generalized Fourier-type transforms and applications, Publ. Mat. 64 (2020), 342.Google Scholar
DeTemple, D. W. and Wang, S.-H., Half integer approximations for the partial sums of the harmonic series, J. Math. Anal. Appl. 160 (1991), 149156.Google Scholar
DeVore, R. A. and Temlyakov, V. N., Some remarks on greedy algorithms, Adv. Comput. Math. 5 (2–3) (1996), 173187.Google Scholar
Dini, U., Memoria sulle serie a termini positivi, Ann. Univ. Tosc. 9 (Part II) (1867), 4180.Google Scholar
Dirichlet, L., Démonstration d’un théorème d’Abel, J. Math. Pures Appl. (Ser. 2) 7 (1862), 253255.Google Scholar
Domínguez, O. and Tikhonov, S., New estimates for the maximal functions and applications. Trans. Am. Math. Soc. 375 (6) (2022), 39694018.Google Scholar
Domínguez, O. and Tikhonov, S., Function spaces of logarithmic smoothness: embeddings and characterizations, Mem. Am. Math. Soc. 1939 (2023), vii, 166p.Google Scholar
Dovgoshey, O., Martio, O., Ryazanov, V., and Vuorinen, M., The Cantor function, Expo. Math. 24 (2006), 137.Google Scholar
Durán, A. L. and Estrada, R., An extension of the integral test, Proc. Am. Math. Soc. 127 (1999), 17451751.Google Scholar
Duzinkiewicz, K. and Szal, B., On the uniform convergence of double sine series, Colloq. Math. 151 (2018), 7195.Google Scholar
Dvoretzky, A., On monotone series, Amer. J. Math. 70 (1948), 167173.Google Scholar
Dyachenko, M. I., Some problems in the theory of multiple trigonometric series, Uspekhi Mat. Nauk 47 (5) (1992), 97162 (Russian). English transl. in Russ. Math. Surv. 47 (5) (1992), 103–171.Google Scholar
Dyachenko, M. I., U-convergence almost everywhere of double Fourier series, Mat. Sb. 186 (1995), 4764 (Russian). English transl. in Sb. Math. 186 (1995), 47–64.Google Scholar
Dyachenko, M. I., u-convergence of multiple Fourier series, Izvestiya RAN: Ser. Mat. 59 (2) (1995), 129142 (Russian). English transl. in Izvestiya: Math. 59 (1995), 353–366.Google Scholar
Dyachenko, M., Liflyand, E., and Tikhonov, S., Uniform convergence and integrability of Fourier integrals, J. Math. Anal. Appl. 372 (2010), 328338.Google Scholar
Dyachenko, M., Mukanov, A., and Tikhonov, S., Uniform convergence of trigonometric series with general monotone coefficients, Canad. J. Math. 71 (6) (2019), 14451463.Google Scholar
Dyachenko, M. and Tikhonov, S., Convergence of trigonometric series with general monotone coefficients, C. R. Math. Acad. Sci. Paris 345, 123126 (2007).Google Scholar
Dyachenko, M. and Tikhonov, S., A Hardy-Littlewood theorem for multiple series, J. Math. Anal. Appl. 339 (2008), 503510.Google Scholar
Dyachenko, M. and Tikhonov, S., General monotone sequences and convergence of trigonometric series, Topics in Classical Analysis and Applications in Honor of Daniel Waterman. World Scientific, Hackensack, NJ, 88101 (2008).Google Scholar
Dyachenko, M. and Tikhonov, S., Integrability and continuity of functions represented by trigonometric series: coefficients criteria, Studia Math. 193 (3) (2009), 285306.Google Scholar
Dyachenko, M. and Tikhonov, S., Smoothness and asymptotic properties of functions with general monotone Fourier coefficients, J. Fourier Anal. Appl. 24 (4) (2018), 10721097.Google Scholar
Echi, O., Khalfallah, A., and Kroumi, D., Sharp estimate of the remainder of some alternating series, Math. Inequal. Appl. 26 (2023), 8391.Google Scholar
Elias, U., Rearrangement of a conditionally convergent series, Am. Math. Mon. 110 (1) (2003), p. 57.Google Scholar
Erdős, P., Joó, I., and Székely, L. A., Some remarks on infinite series, Stud. Sci. Math. Hung. 22 (1–4) (1987), 395400.Google Scholar
Ermakov, V., Théorie de la convergence des séries infinies et des intégrates définies, Mat. Sb. 6 (1872), 3976.Google Scholar
Estrada, R. and Pavlović, M., L’Hôpital’s monotone rule, Gromov’s theorem, and operations that preserve the monotonicity of quotients, Publ. Inst. Math., Nouv. Sér. 101 (2017), 1124.Google Scholar
Euler, L., De Transformatione serierum, Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum, 1755.Google Scholar
Fahri, B., A curious result related to Kempner’s series, Am. Math. Mon. 115 (10) (2008), 933938.Google Scholar
Faisant, A., Grekos, G., and Mis̆ík, L., Some generalizations of Olivier’s theorem, Math. Bohem. 141 (2016), 483494.Google Scholar
Feng, L., Totik, V., and Zhou, S. P., Trigonometric series with a generalized monotonicity condition, Acta Math. Sin. (Engl. Ser.) 30 (8) (2014), 12891296.Google Scholar
Ferdinands, R. J., Selective sums of an infinite series, Math. Mag. 88 (3) (2015), 179185.Google Scholar
Filipów, R., Kwela, A., and Tryba, J., The ideal test for the divergence of a series, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117 (3) (2023), Paper No. 98, 25p.Google Scholar
Garibay, F., Greenberg, P., Resendis, L., and Rivaud, J. J., The geometry of sum-preserving permutations, Pac. J. Math. 135 (2) (1988), 313322.Google Scholar
Goar, M., Olivier and Abel on series convergence: an episode from early 19th century analysis, Math. Mag. 72 (5) (1999), 347355.Google Scholar
Gorbachev, D., Liflyand, E., and Tikhonov, S., Weighted Fourier inequalities: Boas’ conjecture in Rn, J. Anal. Math. 114 (2011), 99120.Google Scholar
Gordon, R. A., Comments on “subsums of the harmonic series”, Am. Math. Mon. 126 (3) (2019), 275279.Google Scholar
Hadamard, J., Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques, Bull. Soc. Math. France 24 (1896), 199220.Google Scholar
Hafner, J. and Mancosu, P., The varieties of mathematical explanation, Visualization, Explanation and Reasoning Styles in Mathematics. Based on the Meeting on Mathematics as Rational Activity, Roskilde, Denmark, November 1–3, 2001, Springer, Dordrecht, 215250 (2005).Google Scholar
Hamilton, H. J., On transformations of double series, Bull. Am. Math. Soc. 42 (1936), 275283.Google Scholar
Hamilton, H. J., Transformations of multiple sequences, Duke Math. J. 2 (1936), 2960.Google Scholar
Hamming, R. W., Convergent monotone series, Am. Math. Mon. 52 (1945), 7072.Google Scholar
Hamming, R. W., Monotone series, Am. J. Math. 68 (1946), 133136.Google Scholar
Hammond, C. N. B., Ratios, roots, and means: a quartet of convergence tests, Elem. Math. 75 (3) (2020), 89102.Google Scholar
Hammond, C. N. B., The case for Raabe’s test, Math. Mag. 93 (2020), 3646.Google Scholar
Hammond, C. N. B. and Omey, E., A second look at the second ratio test, Am. Math. Mon. 128 (7) (2021), 579596.Google Scholar
Hardy, G. H., A general theorem concerning absolutely convergent series, Proc. Lond. Math. Soc. (2) 1 (1904), 285290.Google Scholar
Hardy, G. H., On the convergence of certain multiple series, Proc. London Math. Soc. s2 -1 (1904), 124128.Google Scholar
Hardy, G. H., Note in addition to a former paper on conditionally convergent multiple series, Proc. London Math. Soc. (2) 2 (1905), 190191.Google Scholar
Hardy, G. H., The multiplication of conditionally convergent series, Proc. London Math. Soc. s2 -6 (1908), 410423.Google Scholar
Hardy, G. H., Theorems connected with Maclaurin’s test for the convergence of series, Proc. London Math. Soc. (2) 9 (1911), 126144.Google Scholar
Hardy, G. H., Note on a theorem of Cesàro, Messeng. Math. 41 (2) (1912), 1722.Google Scholar
Hardy, G. H., On the convergence of certain multiple series, Proc. Camb. Phil. Soc. 19 (1917), 8695.Google Scholar
Hardy, G. H. and Littlewood, J. E., Some problems of “Partitio numerorum”. III: on the expression of a number as a sum of primes, Acta Math. 44 (1923), 170.Google Scholar
Hildebrandt, T. H., Remarks on the Abel-Dini theorem, Am. Math. Mon. 49 (1942), 441445.Google Scholar
Hoang, N. S., A limit comparison test for general series, Am. Math. Mon. 122 (9) (2015), 893896.Google Scholar
Hu, M.-C. and Wang, J.-K., On rearrangements of series, Bull. Inst. Math., Acad. Sin. 7 (1979), 363376.Google Scholar
Hurwitz, A., Ueber Riemann’s Convergenzkriterium, Math. Ann. 44 (1894), 8388 (German).Google Scholar
Huynh, E., A second Raabe’s test and other series tests, Am. Math. Mon. 129 (9) (2022), 865875.Google Scholar
Jameson, G. J. O., A note on series of positive and negative terms, Math. Gaz. 102 (2018), 320325.Google Scholar
Jamet, V., Sur les séries à termes positifs, C. R. Acad. Sci., Paris 114 (1892), 5760.Google Scholar
Jasek, B., Über Umordnung von Reihen, Colloq. Math. 7 (1960), 257259.Google Scholar
Jasek, B., Complex series and connected sets, Diss. Math. 52 (1966), 47p.Google Scholar
Jehle, H., Eine bemerkung zum konvergenzkriterium von Weierstraβ, Math. Z. 52 (1950), 6061 (German).Google Scholar
Johnsonbaugh, R., Summing an alternating series, Am. Math. Mon. 86 (8) (1979), 637648.Google Scholar
Jordan, C., Sur les conditions de convergence de certaines séries multiples, Bull. Soc. Math. France 9 (1881), 113115.Google Scholar
Kadets, M. I., On the absolute, perfect and unconditional convergence of double series, Funktsional. Anal. i Prilozhen. 30 (2) (1996), 8586 (Russian). English transl. in Funct. Anal. Appl. 30 (2) (1996), 140–142.Google Scholar
Kadets, M. I., On absolute, perfect, and unconditional convergences of double series in Banach spaces, Ukr. Mat. Zh. 49 (1997), 10321041 (Russian). English transl. in Ukr. Math. J. 49 (1997), 1158–1168.Google Scholar
Kempner, A. J., A curious convergent series, Am. Math. Mon. 21 (2) (1914), 4850.Google Scholar
Kesava Menon, P., On a class of perfect sets, Bull. Amer. Math. Soc. 54 (1948), 706711.Google Scholar
Kojima, T., On the theory of double sequences, Tôhoku Math. J. 21 (1922), 314.Google Scholar
Kórus, P., Remarks on the uniform and L1-convergence of trigonometric series, Acta Math. Hungar. 128 (4) (2010), 369380.Google Scholar
Kórus, P., On the uniform convergence of double sine series with generalized monotone coefficients, Period. Math. Hungar. 63 (2) (2011), 205214.Google Scholar
Kórus, P., On the uniform convergence of special sine integrals, Acta Math. Hungar. 133 (1–2) (2011), 8291.Google Scholar
Kórus, P., Uniform convergence of double trigonometric series, Math. Bohem. 138 (3) (2013), 225243.Google Scholar
Kórus, P., Uniform convergence of double trigonometric integrals, Colloq. Math. 154 (2018), 107119.Google Scholar
Kórus, P. and Móricz, F., On the uniform convergence of double sine series, Studia Math. 193 (2009), 7997.Google Scholar
Kostin, A. B. and Sherstyukov, V. B., Asymptotic behavior of remainders of special number series, J. Math. Sci., New York 251 (6) (2020), 814838.Google Scholar
Kostyrko, P., Šalát, T., and Wilczyński, W., I-convergence, Real Anal. Exch. 26 (2) (2001), 669685.Google Scholar
Krantz, S. G. and McNeal, J. D., Creating more convergent series, Am. Math. Mon. 111 (1) (2004), 3238.Google Scholar
Krause, J. M., Über Fouriersche Reihen mit zwei veränderlichen Größen, Ber. Sächs. Akad. Wiss. Leipzig 55 (1903), 164197.Google Scholar
Kressner, D. and Tobler, C., Low-rank tensor Krylov subspace methods for parametrized linear systems, SIAM J. Matrix Anal. Appl. 32 (4) (2011), 12881316.Google Scholar
Kronrod, A., On permutation of terms of numerical series, Mat. Sb., Nov. Ser. 18 (1946), 237280 (Russian).Google Scholar
Kummer, E. E., Über die convergenz und divergenz der unendlichen reihen, J. Reine Angew. Math. 13 (1835), 171184.Google Scholar
Kung, S. H. L., A note on a form of ratio test, Math. Mag. 41 (1968), 144146.Google Scholar
Kuperberg, V., Sums of singular series with large sets and the tail of the distribution of primes, Q. J. Math. 74 (4) (2023), 14571479.Google Scholar
Laeng, E. and Pata, V., A convergence-divergence test for series of nonnegative terms, Expo. Math. 29 (2011), 420424.Google Scholar
Leindler, L., On cosine series with positive coefficients, Acta Math. Acad. Sci. Hung. 22 (1972), 397406.Google Scholar
Leindler, L., Inequalities of Hardy-Littlewood type, Anal. Math. 2 (2) (1976), 117123.Google Scholar
Leindler, L., On the uniform convergence and boundedness of a certain class of sine series, Anal. Math. 27 (2001), 279285.Google Scholar
Leindler, L., A new class of numerical sequences and its applications to sine and cosine series, Anal. Math. 28 (4) (2002), 279286.Google Scholar
Leindler, L., Embedding relations of classes of numerical sequences, Acta Sci. Math. (Szeged) 68 (2002), 689695.Google Scholar
Leindler, L., Embedding results regarding strong approximation of sine series, Acta Sci. Math. (Szeged) 71 (2005), 91103.Google Scholar
Leindler, L., On the relationships of seven numerical sequences, Acta Math. Hungar. 114 (3) (2007), 227234.Google Scholar
Leindler, L., On the uniform convergence of single and double sine series, Acta Math. Hungar. 140 (3) (2013), 232242.Google Scholar
Leindler, L., An addition to Tandori’s summation theorem, Acta Math. Hungar. 143 (2014), 201207.Google Scholar
Leja, F., Sur les transformations linéaires des suites doubles et multiples, Bulletin Acad. Polonaise (1930), 110.Google Scholar
Leonov, A. S., On the total variation for functions of several variables and a multidimensional analog of Helly’s selection principle (English. Russian original), Math. Notes 63 (1998), 6171.Google Scholar
Levi, F. W., Rearrangement of convergent series, Duke Math. J. 13 (1946), 579585.Google Scholar
Liflyand, E., Stadtmüller, U., and Trigub, R., An interplay of multidimensional variations in Fourier analysis, J. Fourier Anal. Appl. 17 (2) (2011), 226239.Google Scholar
Liflyand, E. and Stadtmüller, U., A multidimensional Euler-Maclaurin formula and an application, Complex Analysis and Dynamical Systems V. Contemp. Math. 591 (2013), 183194.Google Scholar
Liflyand, E. and Tikhonov, S., Extended solution of Boas’ conjecture on Fourier transforms, C. R. Math. Acad. Sci. Paris 346 (21–22) (2008), 11371142.Google Scholar
Liflyand, E. and Tikhonov, S., The Fourier transforms of general monotone functions, Trends in Mathematics, Basel: Birkhäuser, 373391 (2009).Google Scholar
Liflyand, E. and Tikhonov, S., A concept of general monotonicity and applications, Math. Nachr. 284 (8–9) (2011), 10831098.Google Scholar
Liflyand, E., Tikhonov, S., and Zeltser, M., Extending tests for convergence of number series, J. Math. Anal. Appl. 377 (2011) 194206.Google Scholar
Littlewood, J. E., Note on the convergence of series of positive terms, Messeng. Math. 39 (1910), 191192.Google Scholar
Limaye, B. V. and Zeltser, M., On the Pringsheim convergence of double series, Proc. Est. Acad. Sci. 58 (2009), 108121.Google Scholar
Lobachevskii, N.I., Polnoe sobranie sochinenii. Tom 5. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1951, pp. 252255 (Russian).Google Scholar
Longo, M. and Valori, V., The comparison test–not just for nonnegative series, Math. Mag. 79 (3) (2006), 205210.Google Scholar
Lubeck, B. and Ponomarenko, V., Subsums of the harmonic series, Am. Math. Mon. 125 (4) (2018), 351355.Google Scholar
Lunin, A. A., Grouping the terms of numerical series, Math. Notes 44 (5) (1988), 842847.Google Scholar
Mertens, F., Ein Beitrag zur analytischen Zahlentheorie, J. Reine Angew. Math. 78 (1874), 4662.Google Scholar
Meyer, B., On the convergence of alternating double series, Am. Math. Mon. 60 (1953), 402404.Google Scholar
Michelow, J., A note on two convergence tests, Am. Math. Mon. 67 (6) (1960), 581583.Google Scholar
Miller, H., A ratio-type convergence test, Am. Math. Mon. 77 (1970), 285287.Google Scholar
Mordell, L. J., On the convergence of a certain multiple series, Math. Proc. Cambridge Philos. Soc. 25 (4) (1929), 407409.Google Scholar
Móricz, F., On the convergence in a restricted sense of multiple series, Anal. Math. 5 (2) (1979), 135147.Google Scholar
Móricz, F., Some remarks on the notion of regular convergence of multiple series, Acta Math. Hung. 41 (1983), 161168.Google Scholar
Móricz, F., On the uniform convergence of sine integrals, J. Math. Anal. Appl. 354 (2009), 213219.Google Scholar
Móricz, F., On the convergence of double integrals and a generalized version of Fubini’s theorem on successive integration, Acta Sci. Math. (Szeged) 78 (3–4) (2012), 469487.Google Scholar
Móricz, F., On the regular convergence of multiple integrals of locally Lebesgue integrable functions over , C. R. Math., Acad. Sci. Paris 350 (9–10) (2012), 459464.Google Scholar
Móricz, F., On the regular convergence of multiple series of numbers and multiple integrals of locally integrable functions over , Anal. Math. 39 (2) (2013), 135152.Google Scholar
Morley, R. K., The remainder in computing by series, Am. Math. Mon. 57 (8) (1950), 550551.Google Scholar
Mortini, R. and Rupp, R., Sums of infinite series involving the Riemann zeta function, Arch. Math. 123 (2024), 163172.Google Scholar
Müntz, Ch. H., Über den Approximationssatz von Weierstraß, Mathematische Abhandlungen Hermann Amandus Schwarz, 1914, pp. 303312.Google Scholar
Nash-Williams, C. St. J. A. and White, D. J., An application of network flows to rearrangement of series, J. Lond. Math. Soc., II. Ser. 59 (2) (1999), 637646.Google Scholar
Nash-Williams, C. St. J. A. and White, D. J., Rearrangement of vector series, I, Math. Proc. Camb. Philos. Soc. 130 (2001), 89109.Google Scholar
Nash-Williams, C. St. J. A. and White, D. J., Rearrangement of vector series, II, Math. Proc. Camb. Philos. Soc. 130 (2001), 111134.Google Scholar
Nelsen, R. B., An improved remainder estimate for use with the integral test, College Math. J. 34 (5) (2003), 397399.Google Scholar
Newman, D. J., Simple analytic proof of the prime number theorem, Am. Math. Mon. 87 (9) (1980), 693696.Google Scholar
Newman, D. J. and Shapiro, H. S., The Taylor coefficients of inner functions, Michigan Math. J. 9 (1962), 249255.Google Scholar
Newton, T. A., A note on a generalization of the Cauchy-Maclaurin integral test, Am. Math. Mon. 61 (1954), 331334.Google Scholar
Niculescu, C. P. and Prǎjiturǎ, G. T., Some open problems concerning the convergence of positive series, Ann. Acad. Rom. Sci., Math. Appl. 6 (2014), 92107.Google Scholar
Nurcombe, J. R., A sequence of convergence tests, Am. Math. Mon. 86 (1979), 679681,Google Scholar
Nurcombe, J. R., Necessary conditions for the convergence of series of positive terms, Math. Gaz. 98 (No. 543) (2014), 493496.Google Scholar
Nurcombe, J. R., Converses of a “curious” theorem of Cesàro on conditionally convergent series, Math. Gaz. 100 (2016), 113118.Google Scholar
Nursultanov, E. D., On the coefficients of multiple Fourier series in Lp-spaces, Izv. RAN. Ser. Mat. 64 (2000), 95122 (Russian). English transl. in Izv. Math. 64 (2000), 93–120.Google Scholar
Nursultanov, E. D., Net spaces and inequalities of Hardy–Littlewood type, Mat. Sb. 189 (3) (1998), 83102 (Russian). English transl. in Sb. Math. 189 (3) (1998), 399–419.Google Scholar
Nyblom, M. A., Integer part of the partial sums for the divergent p-series in closed form, Am. Math. Mon. 127 (6) (2020), 554557.Google Scholar
Oehring, C., Asymptotics of singular numbers of smooth kernels via trigonometric transforms, J. Math. Anal. Appl. 145 (1990), 573605.Google Scholar
Olivier, M. L., Remarques sur les séries infinies et leur convergence, J. Reine Angew. Math. 2 (1827), 3144.Google Scholar
Pennisi, L. L., Elementary proof that e is irrational, Am. Math. Mon. 60 (7) (1953), p. 474.Google Scholar
Perlin, I. E., Series with deleted terms, Am. Math. Mon. 48 (1941), 9397.Google Scholar
Pleasants, P. A. B., Rearrangements that preserve convergence, J. Lond. Math. Soc., II. Ser. 15 (1977), 134142.Google Scholar
Pleasants, P. A. B., Addendum: rearrangements that preserve convergence J. Lond. Math. Soc., II. Ser. 18 (1978), 576.Google Scholar
Post, K. A., A combinatorial lemma involving a divergence criterion for series of positive terms, Am. Math. Mon. 77 (1970), 10851087.Google Scholar
Pringsheim, A., Allgemeine Theorie der Divergenz und Convergenz von Reihen mit positiven Gliedern, Math. Ann. 35 (1890), 297394.Google Scholar
Pringsheim, A., Elementare Theorie der unendlichen Doppelreihen, Sitsungsberichte Math.-Phys. Classe Akad. Wiss. München 27 (1897), 101153.Google Scholar
Pringsheim, A., Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289321.Google Scholar
Prus-Wiśniowski, F., A refinement of Raabe’s test, Am. Math. Mon. 115 (3) (2009), 249252.Google Scholar
Prus-Wiśniowski, F., Comparison of Raabe’s and Schlömilch’s tests, Tatra Mt. Math. Publ. 42 (2009), 119130.Google Scholar
Rademacher, H., Über die asymptotische Verteilung gewisser konvergenzerzeugender Faktoren, Math. Z. 11 (1921), 276288.Google Scholar
Rajagopal, C. T., On an integral test of R. W. Brink for the convergence of series, Bull. Am. Math. Soc. 43 (1937), 405412.Google Scholar
Rajagopal, C. T., Remarks on some generalizations of Cauchy’s condensation and integral tests, Am. Math. Mon. 48 (1941), 180185.Google Scholar
Rees, C. S., On the integral modulus of continuity of Fourier series, Ind. J. Math. 9 (1967), 489497.Google Scholar
Robinson, G. M., Divergent double sequences and series, Trans. Amer. Math. Soc. 28 (1926), 5073.Google Scholar
Šalát, T. and Toma, V., A classical Olivier’s theorem and statistical convergence, Ann. Math. Blaise Pascal 10 (2) (2003), 305313.Google Scholar
Saucedo, M., Hardy inequalities for p-weakly monotone functions, Eurasian Math. J. 14 (2) (2023), 94106.Google Scholar
Schaefer, P., Sum-preserving rearrangements of infinite series, Am. Math. Mon. 88 (1981), 3340.Google Scholar
Schmelzer, T. and Baillie, R., Summing a curious, slowly convergent series, Am. Math. Mon. 115 (6) (2008), 525540.Google Scholar
Schramm, M., Troutman, J., and Waterman, D., Segmentally alternating series, Am. Math. Mon. 121 (8) (2014), 717722.Google Scholar
Sellers, J. A., Beyond mere convergence, Probl. Res. Iss. Math. Undergrad. Stud. 12 (2) (2002), 157164.Google Scholar
Shah, S. M., A note on quasi-monotone series, Math. Student 15 (1947), 1924.Google Scholar
Sheffer, I. M., Convergence of multiply-infinite series, Am. Math. Mon. 52 (1945), 365376.Google Scholar
Slyusarchuk, V. Yu., Differential convergence criteria for operator improper integrals and series, Ukr. Math. J. 73 (9) (2022), 14451461.Google Scholar
Sørensen, H. K.. Exceptions and counterexamples: understanding Abel’s comment on Cauchy’s Theorem, Historia Math. 32 (4) (2005), 453480.Google Scholar
Stadler, A., A calculus exam misprint ten years later, SIAM Probl. Sol. (2009), 14.Google Scholar
Stanaitis, O. E., Integral tests for infinite series, Am. Math. Mon. 78 (1971), 164170.Google Scholar
Stechkin, S. B., Trigonometric series with monotone type coefficients, Approximation Theory. Asymptotical Expansions, suppl., MAIK Nauka/Interperiodica, Moscow, 214224, 2001.Google Scholar
Steinhaus, H., Les probabilités dénombrables et leur rapport à la théorie de la mesure, Fund. Math. 4 (1922), 286310.Google Scholar
Stoica, G. and Wardat, Y., A special form of slower divergent series, Am. Math. Mon. 130 (2) (2023), p. 186.Google Scholar
Stolz, O., Über unendliche Doppelreihen, Math. Ann. 24 (1884), 157171.Google Scholar
Szal, B., A new class of numerical sequences and its applications to uniform convergence of sine series, Math. Nachr. 284 (14–15) (2011), 19852002.Google Scholar
Szal, B., On L-convergence of trigonometric series, J. Math. Anal. Appl. 373 (2) (2011), 449463.Google Scholar
Szal, B., On the integral modulus of continuity of Fourier series, Acta Math. Hungar. 131 (1-2) (2011), 138159.Google Scholar
Szász, O., Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen, Math. Ann. 77 (1916), 482496.Google Scholar
Szász, O., Quasi-monotone series, Amer. J. Math. 70 (1948), 203206 (1948).Google Scholar
Tao, T., The convergence of an alternating series of Erdős, assuming the Hardy-Littlewood prime tuples conjecture, Commun. Am. Math. Soc. 4 (2024), 8096.Google Scholar
Telyakovskii, S. A., On the Gauss test for convergence of series, Math. Higher Ed. 11 (2013), 4344 (Russian).Google Scholar
Temlyakov, V.N., Approximation of functions with bounded mixed derivatives, Trudy MIAN 178 (1986), 3113 (Russian). English transl. in Proc. Steklov Inst. Math. 178 (1989), 1–121.Google Scholar
Tikhonov, S., Embedding results in questions of strong approximation by Fourier series, Acta Sci. Math. (Szeged) 72 (1–2) (2006), 117128; published first as S. Tikhonov, Embedding theorems of function classes, IV, November 2005, CRM preprint.Google Scholar
Tikhonov, S., Trigonometric series with general monotone coefficients, J. Math. Anal. Appl. 326 (2007), 721735.Google Scholar
Tikhonov, S., Best approximation and moduli of smoothness: computation and equivalence theorems, J. Approx. Theory 153 (2008), 1939.Google Scholar
Tikhonov, S., On L1-convergence of Fourier series, J. Math. Anal. Appl. 347 (2) (2008), 416427.Google Scholar
Tikhonov, S. and Zeltser, M., Weak monotonicity concept and its applications, Fourier Analysis. Trends in Mathematics: Pseudo-differential Operators, Time-Frequency Analysis and Partial Differential Equations, Birkhäuser, 2014, 357374.10.1007/978-3-319-02550-6_18CrossRefGoogle Scholar
Tong, J., Kummer’s test gives characterizations for convergence or divergence of all positive series, Am. Math. Mon. 101 (5) (1994), 450452.Google Scholar
Torres Latorre, C., Functions preserving general monotone sequences, Anal. Math. 47 (2021), 211227.Google Scholar
Tóth, L. and Bukor, J., On the alternating series , J. Math. Anal. Appl. 282 (2003), 2125.Google Scholar
Trigub, R. M., A generalization of the Euler-Maclaurin formula, Mat. Zametki 61 (1997), 312316 (Russian). English transl. in Math. Notes 61 (1997), 253–257.Google Scholar
Ul’yanov, P. L., The imbedding of certain function classes Izv. Akad. Nauk SSSR Ser. Mat 32 (3) (1968), 649686; Izv. Math. 2 (3) (1968), 601–637.Google Scholar
Ul’yanov, P. L., Imbedding theorems and relations between best approximations, Math. USSR, Sb. 10 (1970), 103126.Google Scholar
Vălean, C. I., A master theorem of series and an evaluation of a cubic harmonic series, J. Class. Anal. 10 (2) (2017), 97107.Google Scholar
Villarino, M. B., The error in an alternating series, Am. Math. Mon. 125 (4) (2018), 360364.Google Scholar
Volosivets, S. S., Cosine and sine series with generalized monotone coefficients in Lorentz spaces, Anal. Math. 45 (4) (2017), 641655.Google Scholar
Volosivets, S. S., Series in multiplicative systems in Lorentz spaces, Mat. Zametki 102 (3) (2017), 339354.Google Scholar
Volosivets, S. and Krivobok, V., The generalized monotonicity class and integrability of power series, Colloq. Math. 130 (2) (2013), 241249.Google Scholar
Wadhwa, A. D., An interesting subseries of the harmonic series, Am. Math. Mon. 82 (1975), 931933.Google Scholar
Wadhwa, A. D., Some convergent subseries of the harmonic series, Am. Math. Mon. 85 (1978), 661663.Google Scholar
Ward, M., A generalized integral test for convergence of series, Am. Math. Mon. 56 (1949), 170172.Google Scholar
Wik, I., Criteria for absolute convegence of Fourier series of functions of bounded variation, Trans. Amer. Math. Soc. 163 (1972), 124.Google Scholar
Wilansky, A., On the convergence of double series, Bull. Am. Math. Soc. 53 (1947), 793799.Google Scholar
Wintner, A., The sum formula of Euler-Maclaurin and the inversions of Fourier and Möbius, Amer. J. Math. 69 (1947), 685708.Google Scholar
Witula, R., On the set of limit points of the partial sums of series rearranged by a given divergent permutation, J. Math. Anal. Appl. 362 (2) (2010), 542552.Google Scholar
Witula, R., Permutations preserving the convergence or the sum of series – a survey, Monograph on the occasion of 100th birthday anniversary of Zygmunt Zahorski, Wydawnictwo Politechniki Śląskiej, Gliwice, 169190, 2015.Google Scholar
Witula, R. and Slota, D., The convergence classes of divergent permutations, Demonstr. Math. 42 (4) (2009), 781796.Google Scholar
Yeşilkayagil, M. and Başar, F., On the paranormed space of bounded variation double sequences, Bull. Malays. Math. Sci. Soc. (2) 43 (3) (2020), 27012712.Google Scholar
Young, R. M., The error in alternating series, Math. Gaz. 69 (1985), 120121.Google Scholar
Yu, D., Zhou, P., and Zhou, S., Mean bounded variation condition and applications in double trigonometric series, Anal. Math. 38 (2) (2012), 83104.Google Scholar
Zeltser, M., On equiconvergence of number series, Math. Slovaca 63 (2013), 13331346.Google Scholar
Zemyan, S. M., On two conjectures concerning the partial sums of the harmonic series, Proc. Amer. Math. Soc. 95 (1985), 8386.Google Scholar
Zhizhiashvili, L. V., Some problems in the theory of simple and multiple trigonometric and orthogonal series, Uspekhi Mat. Nauk 28 (1973), 65119 (Russian). English transl. in Russian Math. Surveys 28 (1973), 65–127.Google Scholar

Accessibility standard: WCAG 2.1 A

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.1 of the Web Content Accessibility Guidelines (WCAG), covering newer accessibility requirements and improved user experiences and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×