Published online by Cambridge University Press: 05 February 2013
Introduction
Superfluids can flow without friction and display two-fluid phenomena. These two properties, which have quantum mechanical origins, lie outside common experience with classical fluids. The subject of superfluids has thus generally been relegated to the backwaters of mainstream fluid dynamics. The focus of low-temperature physicists has been the microscopic structure of superfluids, which does not naturally invite the attention of experts on classical fluids. However, perhaps amazingly, there exists a state of superfluid flow that is similar to classical turbulence, qualitatively and quantitatively, in which superfluids are endowed with quasiclassical properties such as effective friction and finite heat conductivity. This state is called superfluid or quantum turbulence (QT) [Feynman (1955); Vinen & Niemela (2002); Skrbek (2004); Skrbek & Sreenivasan (2012)]. Although QT differs from classical turbulence in several important respects, many of its properties can often be understood in terms of the existing phenomenology of its classical counterpart. We can also learn new physics about classical turbulence by studying QT. Our goal in this article is to explore this interrelation. Instead of expanding the scope of the article broadly and compromising on details, we will focus on one important aspect: the physics that is common between decaying vortex line density in QT and the decay of three-dimensional (3D) turbulence that is nearly homogeneous and isotropic turbulence (HIT), which has been a cornerstone of many theoretical and modeling advances in hydrodynamic turbulence. A more comprehensive discussion can be found in a recent review by Skrbek & Sreenivasan (2012).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.