Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-ks5gx Total loading time: 0 Render date: 2025-06-14T13:53:09.887Z Has data issue: false hasContentIssue false

Section I - Iatrogenic ischemic strokes: peri- and postoperative strokes

Published online by Cambridge University Press:  20 October 2016

Alexander Tsiskaridze
Affiliation:
Sarajishvili Institute of Neurology, Tblisi State University, Georgia
Arne Lindgren
Affiliation:
Department of Neurology, University Hospital Lund, Sweden
Adnan I. Qureshi
Affiliation:
Department of Neurology, University of Minnesota
Get access
Type
Chapter
Information
Treatment-Related Stroke
Including Iatrogenic and In-Hospital Strokes
, pp. 1 - 62
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Hart, R, Hindman, B. Mechanisms of perioperative cerebral infarction. Stroke. 1982; 13:766–73.CrossRefGoogle ScholarPubMed
Larsen, S F, Zaric, D, Bosen, G. Postoperative cerebrovascular accidents in general surgery. Stroke. Acta Anaesthesiol Scand. 1988; 32:698701.CrossRefGoogle Scholar
Parikh, S, Cohen, J R. Postoperative stroke after general surgical procedures. NY State J Med. 1993; 93:162–5.Google ScholarPubMed
Limburg, M, Wijdicks, E F, Li, H. Ischemic stroke after surgical procedures: Clinical features, neuroimaging, and stroke factors. Neurology. 1998; 50:895901.CrossRefGoogle Scholar
Kikura, M, Oikawa, F, Yamamoto, K, et al. Myocardial infarction and cerebrovascular accident following non-cardiac surgery: Differences in postoperative temporal distribution and risk factors. J Thromb Haemost. 2008; 6:742–8.CrossRefGoogle ScholarPubMed
Nosan, D K, Gomez, C R, Maves, M D. Perioperative stroke in patients undergoing head and neck surgery. Ann Otol Rhonol Laryngol. 1993; 102:717–23.Google ScholarPubMed
Bateman, B T, Schumacher, H C, Wang, S, Shaefi, S, Berman, M F. Perioperative acute ischemic stroke in non-cardiac and non-vascular surgery: Incidence, risk factors, and outcomes. Anesthesiology. 2009; 110:231–8.CrossRefGoogle Scholar
Polanczyk, C A, Marcantonio, E, Goldman, L, et al. Impact of age on perioperative complications and length of stay in patients undergoing noncardiac surgery. Ann Intern Med. 2001; 134(8):637–43.CrossRefGoogle ScholarPubMed
Reich, D L, Bennett-Guerrero, E, Bodian, C A, et al. Intraoperative tachycardia and hypertension are independently associated with adverse outcome in noncardiac surgery of long duration. Anesth Analg. 2002; 95(2):273–7.CrossRefGoogle ScholarPubMed
Brooks, D C, Schindler, J L. Perioperative stroke: Risk assessment, prevention and treatment. Current Treatment Options in Cardiovascular Medicine. 2014; 16:282.CrossRefGoogle ScholarPubMed
Press, M J, Chassin, M R, Wang, J, Tuhrim, S, Halm, E A. Predicting medical and surgical complications of carotid endarterectomy: comparing the risk indexes. Arch Intern Med. 2006; 166(8):914–20.CrossRefGoogle ScholarPubMed
Lee, T H, Marcantonio, E R, Mangione, C M, et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation. 1999; 100(10):1043–9.CrossRefGoogle ScholarPubMed
van Diepen, S, Youngson, E, Ezekowitz, J A, McAlister, F A. Which risk score best predicts perioperative outcomes in nonvalvular atrial fibrillation patients undergoing noncardiac surgery?Am Heart J. 2014; 168(1):60–7.CrossRefGoogle ScholarPubMed
Bijker, J B, Persoon, S, Peelen, L M, et al. Anesthesiology. 2012; 116(3):658–64.CrossRefGoogle Scholar
Ng, J L, Chan, M T, Gelb, A W. Perioperative stroke in noncardiac, nonneurosurgical surgery. Anesthesiology. 2011; 115(4):879–90.CrossRefGoogle ScholarPubMed
Hinterhuber, G, Böhler, K, Kittler, H, Quehenberger, P. Dermatol Surg. 2006; 32(5):632–9.Google Scholar
Broderick, J P, Bonomo, J B, Kissela, B M, et al. Withdrawal of antithrombotic agents and its impact on ischemic stroke occurrence. Stroke. 2011; 42(9):2509–14.CrossRefGoogle ScholarPubMed
Sedlaczek, O, Caplan, L, Hennerici, M. Impaired washout-embolism and ischemic stroke: further examples and proof of concept. Cerebrovasc Dis. 2005; 19(6):396401.CrossRefGoogle ScholarPubMed
Kim, J S, Ko, S B, Shin, H E, Han, S R, Lee, K S. Perioperative stroke in the brain and spinal cord following an induced hypotension. Yonsei Med J. 2003; 44(1):143–5.CrossRefGoogle ScholarPubMed
Langmayr, J J, Ortler, M, Obwegeser, A, Felber, S. Quadriplegia after lumbar disc surgery. A case report. Spine. 1996; 21(16):1932–5.CrossRefGoogle Scholar
Jorgensen, M E, Torp-Pedersen, C, Gislason, G H, et al. Time elapsed after ischemic stroke and risk of adverse cardiovascular events and mortality following elective noncardiac surgery. JAMA. 2014; 312(3):269277.CrossRefGoogle ScholarPubMed
Biteker, M, Dayan, A, Can, M M, et al. Impaired fasting glucose is associated with increased perioperative cardiovascular event rates in patients undergoing major non-cardiothoracic surgery. Cardiovasc Diabetol. 2011; 10:63.CrossRefGoogle ScholarPubMed
Gentile, N T, Seftchick, M W, Huynh, T, Kruus, L K, Gaughan, J. Decreased mortality by normalizing blood glucose after acute ischemic stroke. Acad Emerg Med. 2006; 13(2):174–80.CrossRefGoogle ScholarPubMed
Douketis, J D, Spyropoulos, A C, Kaatz, S, et al. Perioperative bridging anticoagulation in patients with atrial fibrillation. New England Journal of Medicine. 2015; 373(9):823–33.CrossRefGoogle ScholarPubMed
Steinberg, B A, Peterson, E D, Kim, S, et al. Use and outcomes associated with bridging during anticoagulation interruptions in patients with atrial fibrillation: Findings from the outcomes registry for better informed treatment of atrial fibrillation (ORBIT-AF). Circulation. 2015; 131(5):488–94.CrossRefGoogle ScholarPubMed
Gialdini, G, Nearing, K, Bhave, P D, et al. Perioperative atrial fibrillation and the long-term risk of ischemic stroke. JAMA. 2014; 312(6):616–22.Google ScholarPubMed
Epstein, A E, Alexander, J C, Gutterman, D D, Maisel, W, Wharton, J M, American College of Chest Physicians. Anticoagulation: American College of Chest Physicians guidelines for the prevention and management of postoperative atrial fibrillation after cardiac surgery. Chest. 2005; 128(2 Suppl):24S27S.CrossRefGoogle ScholarPubMed
Frendl, G, Sodickson, A C, Chung, M K, et al. AATS guidelines for the prevention and management of perioperative atrial fibrillation and flutter for thoracic surgical procedures. J Thorac Cardiovasc Surg. 2014; 148(3):e153–93.CrossRefGoogle ScholarPubMed
Maulaz, A B, Bezerra, D C, Michel, P, Bogousslavsky, J. Effect of discontinuing aspirin therapy on the risk of brain ischemic stroke. Arch Neurol. 2005; 62(8):1217–20.CrossRefGoogle Scholar
Genewein, U, Haeberli, A, Straub, P W, Beer, J H. Rebound after cessation of oral anticoagulant therapy: the biochemical evidence. Br J Haematol. 1996; 92(2):479–85.CrossRefGoogle ScholarPubMed
Douketis, J D, Spyropoulos, A C, Spencer, F A, et al.; American College of Chest Physicians. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012; Feb;141(2 Suppl):e326S–50S. Erratum in: Chest. 2012; 141(4):1129.CrossRefGoogle ScholarPubMed
Assia, E I, Raskin, T, Kaiserman, I, Rotenstreich, Y, Segev, F. Effect of aspirin intake on bleeding during cataract surgery. J Cataract Refract Surg. 1998; 24(9):1243–6.CrossRefGoogle ScholarPubMed
Giannarini, G, Mogorovich, A, Valent, F, et al. Continuing or discontinuing low-dose aspirin before transrectal prostate biopsy: results of a prospective randomized trial. Urology. 2007; 70(3):501–5.CrossRefGoogle ScholarPubMed
Kovich, O, Otley, C C. Thrombotic complications related to discontinuation of warfarin and aspirin therapy perioperatively for cutaneous operation. J Am Acad Dermatol. 2003; 48(2):233–7.CrossRefGoogle ScholarPubMed
Bajkin, B V, Bajkin, I A, Petrovic, B B. The effects of combined oral anticoagulant-aspirin therapy in patients undergoing tooth extractions: a prospective study. J Am Dent Assoc. 2012; 143(7):771–6.CrossRefGoogle ScholarPubMed
Ferraris, V A, Swanson, E. Aspirin usage and perioperative blood loss in patients undergoing unexpected operations. Surg Gynecol Obstet. 1983; 156(4):439–42.Google ScholarPubMed
Capodanno, D, Musumeci, G, Lettieri, C, et al. Impact of bridging with perioperative low-molecular-weight heparin on cardiac and bleeding outcomes of stented patients undergoing non-cardiac surgery. Thromb Haemost. 2015; 114(2):423–31.Google ScholarPubMed
Armstrong, M J, Schneck, M J, Biller, J. Discontinuation of perioperative antiplatelet and anticoagulant therapy in stroke patients. Neurol Clin. 2006; 24(4):607–30.CrossRefGoogle ScholarPubMed
Yusuf, S, Zhao, F, Mehta, S R, et al. Clopidogrel in Unstable Angina to Prevent Recurrent Events Trial Investigators. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med. 2001; 345(7):494502. Erratum in: N Engl J Med 2001; 345(23):1716.Google ScholarPubMed
Larson, B J, Zumberg, M S, Kitchens, C S. A feasibility study of continuing dose-reduced warfarin for invasive procedures in patients with high thromboembolic risk. Chest. 2005; 127(3):922–7.CrossRefGoogle ScholarPubMed
Dunn, A S, Turpie, A G. Perioperative management of patients receiving oral anticoagulants: a systematic review. Arch Intern Med. 2003; 163:901–8.CrossRefGoogle ScholarPubMed
The American Society for Gastrointestinal Endoscopy. Guideline: Management of antithrombotic agents for endoscopic procedures. 2009; doi:10.1016/j.gie.2009.09.040. www.asge.org/uploadedFiles/Publications_and_Products/Practice_Guidelines/PIIS0016510709025498.pdf.Google Scholar
POISE Study Group, Devereaux, P J, Yang, H, Yusuf, S, et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet. 2008; 371(9627):1839–47.Google Scholar
Wong, G Y, Warner, D O, Schroeder, D R, et al. Risk of surgery and anesthesia for ischemic stroke. Anesthesiology. 2000; 92:425–32.CrossRefGoogle ScholarPubMed
Stentella, P, Frega, A, Cipriano, L, et al. Prevention of thromboembolic complications in women undergoing gynecologic surgery. Clin Exp Obstet Gynecol. 1997; 24:5860.Google ScholarPubMed
Celebi, F, Balik, A A, Yildirgan, M I, et al. Thromboembolic prophylaxis after major abdominal surgery. Ulus Travma Derg. 2001; 7:44–8.Google ScholarPubMed
Amarigiri, S V, Lees, T A. Elastic compression stockings for prevention of deep vein thrombosis. Cochrane Database Syst Rev. 2000; CD001484.CrossRefGoogle Scholar
Chalela, J A, Katzan, I, Liebeskind, D S, et al. Safety of intra-arterial thrombolysis in the postoperative period. Stroke. 2001; 32(6):1365–9.Google ScholarPubMed

References

CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet. 1996; 348(9038):1329–39.Google Scholar
Sigvant, B, Wiberg-Hedman, K, Bergqvist, D, et al. A population-based study of peripheral arterial disease prevalence with special focus on critical limb ischemia and sex differences. J Vasc Surg. 2007; 45(6):1185–91.CrossRefGoogle ScholarPubMed
Steg, P G, Bhatt, D L, Wilson, P W, et al. One-year cardiovascular event rates in outpatients with atherothrombosis. JAMA. 2007; 297(11):1197–206.CrossRefGoogle ScholarPubMed
Diehm, C, Allenberg, J R, Pittrow, D, et al. Mortality and vascular morbidity in older adults with asymptomatic versus symptomatic peripheral artery disease. Circulation. 2009; 120(21):2053–61.CrossRefGoogle ScholarPubMed
Clark, C E, Taylor, R S, Shore, A C, Ukoumunne, O C, Campbell, J L. Association of a difference in systolic blood pressure between arms with vascular disease and mortality: a systematic review and meta-analysis. Lancet. 2012; 379(9819):905–14.CrossRefGoogle ScholarPubMed
Naylor, A R, Bown, M J. Stroke after cardiac surgery and its association with asymptomatic carotid disease: an updated systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2011; 41(5):607–24.CrossRefGoogle ScholarPubMed
Ballotta, E, Renon, L, Da Giau, G, et al. Prospective randomized study on asymptomatic severe carotid stenosis and perioperative stroke risk in patients undergoing major vascular surgery: prophylactic or deferred carotid endarterectomy? Ann Vasc Surg. 2005; 19(6):876–81.CrossRefGoogle ScholarPubMed
Bergqvist, D, Rosén, M. Health technology assessment in surgery. Scand J Surg. 2012; 101(2):132–7.CrossRefGoogle ScholarPubMed
Patel, H J, Nguyen, C, Diener, A C, et al. Open arch reconstruction in the endovascular era: analysis of 721 patients over 17 years. J Thorac Cardiovasc Surg. 2011; 141(6):1417–23.CrossRefGoogle ScholarPubMed
Sundt, T M 3rd, Orszulak, T A, Cook, D J, Schaff, H V. Improving results of open arch replacement. Ann Thorac Surg. 2008; 86(3):787–96.CrossRefGoogle ScholarPubMed
Schermerhorn, M L, Giles, K A, Hamdan, A D, et al. Population-based outcomes of open descending thoracic aortic aneurysm repair. J Vasc Surg. 2008; 48(4):821–7.CrossRefGoogle ScholarPubMed
Nakamura, K, Nakamura, E, Yano, M, et al. Factors influencing permanent neurologic dysfunction and mortality after total arch replacement with separate arch vessel grafting using selective cerebral perfusion. Ann Thorac Cardiovasc Surg. 2011; 17(1):3944.CrossRefGoogle ScholarPubMed
Cheng, G, Zhang, L. [Adverse events related to bevacizumab and the management principles in non-small cell lung cancer]. Zhongguo Fei Ai Za Zhi. 2010; 13(6):563–7.Google ScholarPubMed
Gupta, P K, Pipinos, I I, Miller, W J, et al. A population-based study of risk factors for stroke after carotid endarterectomy using the ACS NSQIP database. J Surg Res. 2011; 167(2):182–91.CrossRefGoogle ScholarPubMed
Parlani, G, De Rango, P, Cieri, E, et al. Diabetes is not a predictor of outcome for carotid revascularization with stenting as it may be for carotid endarterectomy. J Vasc Surg. 2012; 55(1):7989.CrossRefGoogle Scholar
Rothwell, P M, Slattery, J, Warlow, C P. A systematic comparison of the risks of stroke and death due to carotid endarterectomy for symptomatic and asymptomatic stenosis. Stroke. 1996; 27(2):266–9.Google ScholarPubMed
Naylor, A R, Rothwell, P M, Bell, P R. Overview of the principal results and secondary analyses from the European and North American randomised trials of endarterectomy for symptomatic carotid stenosis. Eur J Vasc Endovasc Surg. 2003; 26(2):115–29.CrossRefGoogle ScholarPubMed
Antonopoulos, C N, Kakisis, J D, Sergentanis, T N, Liapis, C D. Eversion versus conventional carotid endarterectomy: a meta-analysis of randomised and non-randomised studies. Eur J Vasc Endovasc Surg. 2011; 42(6):751–65.CrossRefGoogle ScholarPubMed
Economopoulos, K P, Sergentanis, T N, Tsivgoulis, G, Mariolis, A D, Stefanadis, C. Carotid artery stenting versus carotid endarterectomy: a comprehensive meta-analysis of short-term and long-term outcomes. Stroke. 2011; 42(3):687–92.Google ScholarPubMed
Usman, A A, Tang, G L, Eskandari, M K. Metaanalysis of procedural stroke and death among octogenarians: carotid stenting versus carotid endarterectomy. J Am Coll Surg. 2009; 208(6):1124–31.CrossRefGoogle ScholarPubMed
Stromberg, S, Gelin, J, Osterberg, T, et al. Very urgent carotid endarterectomy confers increased procedural risk. Stroke. 2012; 43(5):1331–5.Google ScholarPubMed
Adriaensen, M E, Bosch, J L, Halpern, E F, Myriam Hunink, M G, Gazelle, G S. Elective endovascular versus open surgical repair of abdominal aortic aneurysms: systematic review of short-term results. Radiology. 2002; 224(3):739–47.CrossRefGoogle ScholarPubMed
Blankensteijn, J D. Mortality and morbidity rates after conventional abdominal aortic aneurysm repair. Semin Interv Cardiol. 2000; 5(1):713.Google ScholarPubMed
Schermerhorn, M L, O’Malley, A J, Jhaveri, A, et al. Endovascular vs. open repair of abdominal aortic aneurysms in the Medicare population. N Engl J Med. 2008; 358(5):464–74.CrossRefGoogle ScholarPubMed
Kikura, M, Takada, T, Sato, S. Preexisting morbidity as an independent risk factor for perioperative acute thromboembolism syndrome. Arch Surg. 2005; 140(12):1210–7.CrossRefGoogle Scholar
Ng, J L, Chan, M T, Gelb, A W. Perioperative stroke in noncardiac, nonneurosurgical surgery. Anesthesiology. 2011; 115(4):879–90.CrossRefGoogle ScholarPubMed
Bijker, J B, Persoon, S, Peelen, L M, et al. Intraoperative hypotension and perioperative ischemic stroke after general surgery: a nested case-control study. Anesthesiology. 2012; 116(3):658–64.CrossRefGoogle ScholarPubMed
Parikh, S, Cohen, J R. Perioperative stroke after general surgical procedures. N Y State J Med. 1993; 93(3):162–5.Google ScholarPubMed
Larsen, S F, Zaric, D, Boysen, G. Postoperative cerebrovascular accidents in general surgery. Acta Anaesthesiol Scand. 1988; 32(8):698701.CrossRefGoogle ScholarPubMed
Limburg, M, Wijdicks, E F, Li, H. Ischemic stroke after surgical procedures: clinical features, neuroimaging, and risk factors. Neurology. 1998; 50(4):895901.CrossRefGoogle ScholarPubMed
Sobel, M, Verhaeghe, R. Antithrombotic therapy for peripheral artery occlusive disease: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008; 133(6 Suppl):815S-43S.CrossRefGoogle ScholarPubMed
Lindblad, B, Persson, N H, Takolander, R, Bergqvist, D. Does low-dose acetylsalicylic acid prevent stroke after carotid surgery? A double-blind, placebo-controlled randomized trial. Stroke. 1993; 24(8):1125–8.CrossRefGoogle ScholarPubMed
Sharpe, R Y, Dennis, M J, Nasim, A, et al. Dual antiplatelet therapy prior to carotid endarterectomy reduces post-operative embolisation and thromboembolic events: post-operative transcranial Doppler monitoring is now unnecessary. Eur J Vasc Endovasc Surg. 2010; 40(2):162–7.CrossRefGoogle ScholarPubMed
Payne, D A, Jones, C I, Hayes, P D, et al. Beneficial effects of clopidogrel combined with aspirin in reducing cerebral emboli in patients undergoing carotid endarterectomy. Circulation. 2004; 109(12):1476–81.CrossRefGoogle ScholarPubMed
O’Neil-Callahan, K, Katsimaglis, G, Tepper, M R, et al. Statins decrease perioperative cardiac complications in patients undergoing noncardiac vascular surgery: the Statins for Risk Reduction in Surgery (StaRRS) study. J Am Coll Cardiol. 2005; 45(3):336–42.Google Scholar
Durazzo, A E, Machado, F S, Ikeoka, D T, et al. Reduction in cardiovascular events after vascular surgery with atorvastatin: a randomized trial. J Vasc Surg. 2004; 39(5):967–75.CrossRefGoogle ScholarPubMed
Sillesen, H, Amarenco, P, Hennerici, M G, et al. Atorvastatin reduces the risk of cardiovascular events in patients with carotid atherosclerosis: a secondary analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial. Stroke. 2008; 39(12):3297–302.CrossRefGoogle ScholarPubMed
Kennedy, J, Quan, H, Buchan, A M, Ghali, W A, Feasby, T E. Statins are associated with better outcomes after carotid endarterectomy in symptomatic patients. Stroke. 2005; 36(10):2072–6.CrossRefGoogle ScholarPubMed
McGirt, M J, Perler, B A, Brooke, B S, et al. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors reduce the risk of perioperative stroke and mortality after carotid endarterectomy. J Vasc Surg. 2005; 42(5):829–36.CrossRefGoogle ScholarPubMed
Sharpe, R, Sayers, R D, McCarthy, M J, et al. The war against error: a 15 year experience of completion angioscopy following carotid endarterectomy. Eur J Vasc Endovasc Surg. 2012; 43(2):139–45.CrossRefGoogle ScholarPubMed
Rockman, C B, Halm, E A. Intraoperative imaging: does it really improve perioperative outcomes of carotid endarterectomy? Semin Vasc Surg. 2007; 20(4):236–43.CrossRefGoogle ScholarPubMed
Wallaert, J B, Goodney, P P, Vignati, J J, et al. Completion imaging after carotid endarterectomy in the Vascular Study Group of New England. J Vasc Surg. 2011; 54(2):376–85, 85 e13.CrossRefGoogle ScholarPubMed
Bond, R, Rerkasem, K, Rothwell, P M. Systematic review of the risks of carotid endarterectomy in relation to the clinical indication for and timing of surgery. Stroke. 2003; 34(9):2290–301.CrossRefGoogle Scholar
Turnipseed, W D, Berkoff, H A, Belzer, F O. Postoperative stroke in cardiac and peripheral vascular disease. Ann Surg. 1980; 192(3):365–8.CrossRefGoogle ScholarPubMed
Liapis, C D, Bell, P R, Mikhailidis, D, Sivenius, J, et al. ESVS guidelines. Invasive treatment for carotid stenosis: indications, techniques. Eur J Vasc Endovasc Surg. 2009; 37(4 Suppl):119.CrossRefGoogle ScholarPubMed
Plate, G, Hollier, L H, O’Brien, P C, Pairolero, P C, Cherry, K J. Late cerebrovascular accidents after repair of abdominal aortic aneurysms. Acta Chir Scand. 1988; 154(1):25–9.Google ScholarPubMed
Harris, E J Jr., Moneta, G L, Yeager, R A, Taylor, L M Jr., Porter, J M. Neurologic deficits following noncarotid vascular surgery. Am J Surg. 1992; 163(5):537–40.CrossRefGoogle ScholarPubMed
Pomposelli, F B, Kansal, N, Hamdan, A D, et al. A decade of experience with dorsalis pedis artery bypass: analysis of outcome in more than 1000 cases. J Vasc Surg. 2003; 37(2):307–15.CrossRefGoogle ScholarPubMed
Liapis, C D, Kakisis, J D, Dimitroulis, D A, et al. Carotid ultrasound findings as a predictor of long-term survival after abdominal aortic aneurysm repair: a 14-year prospective study. J Vasc Surg. 2003; 38(6):1220–5.CrossRefGoogle ScholarPubMed
Blankensteijn, J D, de Jong, S E, Prinssen, M, et al. Two-year outcomes after conventional or endovascular repair of abdominal aortic aneurysms. N Engl J Med. 2005; 352(23):2398–405.CrossRefGoogle ScholarPubMed
Endovascular aneurysm repair versus open repair in patients with abdominal aortic aneurysm (EVAR trial 1): randomised controlled trial. Lancet. 2005; 365(9478):2179–86.Google Scholar
Jensen, L P, Lepantalo, M, Fossdal, J E, et al. Dacron or PTFE for above-knee femoropopliteal bypass. a multicenter randomised study. Eur J Vasc Endovasc Surg. 2007; 34(1):44–9.Google ScholarPubMed
Biancari, F, Salenius, J P, Heikkinen, M, et al. Risk-scoring method for prediction of 30-day postoperative outcome after infrainguinal surgical revascularization for critical lower-limb ischemia: a Finnvasc registry study. World J Surg. 2007; 31(1):217–25.CrossRefGoogle ScholarPubMed
Cherr, GS, Wang, J, Zimmerman, P M, Dosluoglu, H H. Depression is associated with worse patency and recurrent leg symptoms after lower extremity revascularization. J Vasc Surg. 2007; 45(4):744–50.CrossRefGoogle ScholarPubMed
Lederle, F A, Freischlag, J A, Kyriakides, T C, et al. Outcomes following endovascular vs open repair of abdominal aortic aneurysm: a randomized trial. JAMA. 2009; 302(14):1535–42.CrossRefGoogle ScholarPubMed
Lange, C P, Ploeg, A J, Lardenoye, J W, Breslau, P J. Patient- and procedure-specific risk factors for postoperative complications in peripheral vascular surgery. Qual Saf Health Care. 2009; 18(2):131–6.CrossRefGoogle ScholarPubMed
Gisbertz, S S, Ramzan, M, Tutein Nolthenius, R P, et al. Short-term results of a randomized trial comparing remote endarterectomy and supragenicular bypass surgery for long occlusions of the superficial femoral artery [the REVAS trial]. Eur J Vasc Endovasc Surg. 2009; 37(1):6876.CrossRefGoogle ScholarPubMed
Brown, L C, Thompson, S G, Greenhalgh, R M, Powell, J T. Incidence of cardiovascular events and death after open or endovascular repair of abdominal aortic aneurysm in the randomized EVAR trial 1. Br J Surg. 2011; 98(7):935–42.CrossRefGoogle ScholarPubMed
Becquemin, J P, Pillet, J C, Lescalie, F, et al. A randomized controlled trial of endovascular aneurysm repair versus open surgery for abdominal aortic aneurysms in low- to moderate-risk patients. J Vasc Surg. 2011; 53(5):1167–73 e1.CrossRefGoogle ScholarPubMed
Svensson, L G, Crawford, E S, Hess, K R, Coselli, J S, Safi, H J. Variables predictive of outcome in 832 patients undergoing repairs of the descending thoracic aorta. Chest. 1993; 104(4):1248–53.CrossRefGoogle ScholarPubMed
Borst, H G, Jurmann, M, Buhner, B, Laas, J. Risk of replacement of descending aorta with a standardized left heart bypass technique. J Thorac Cardiovasc Surg. 1994; 107(1):126–32.CrossRefGoogle ScholarPubMed
Kouchoukos, N T, Masetti, P, Rokkas, C K, Murphy, S F, Blackstone, E H. Safety and efficacy of hypothermic cardiopulmonary bypass and circulatory arrest for operations on the descending thoracic and thoracoabdominal aorta. Ann Thorac Surg. 2001; 72(3):699707.CrossRefGoogle ScholarPubMed
Brandt, M, Hussel, K, Walluscheck, K P, et al. Stent-graft repair versus open surgery for the descending aorta: a case-control study. J Endovasc Ther. 2004; 11(5):535–8.CrossRefGoogle ScholarPubMed
Coselli, J S, LeMaire, S A, Conklin, L D, Adams, G J. Left heart bypass during descending thoracic aortic aneurysm repair does not reduce the incidence of paraplegia. Ann Thorac Surg. 2004; 77(4):1298–303.CrossRefGoogle Scholar
Estrera, A L, Miller, C C 3rd, Chen, E P, et al. Descending thoracic aortic aneurysm repair: 12-year experience using distal aortic perfusion and cerebrospinal fluid drainage. Ann Thorac Surg. 2005; 80(4):1290–6.CrossRefGoogle ScholarPubMed
Stone, D H, Brewster, D C, Kwolek, C J, et al. Stent-graft versus open-surgical repair of the thoracic aorta: mid-term results. J Vasc Surg. 2006; 44(6):1188–97.CrossRefGoogle ScholarPubMed
Khaladj, N, Shrestha, M, Meck, S, et al. Hypothermic circulatory arrest with selective antegrade cerebral perfusion in ascending aortic and aortic arch surgery: a risk factor analysis for adverse outcome in 501 patients. J Thorac Cardiovasc Surg. 2008; 135(4):908–14.CrossRefGoogle ScholarPubMed
Kulik, A, Castner, C F, Kouchoukos, N T. Outcomes after thoracoabdominal aortic aneurysm repair with hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 2011; 141(4):953–60.CrossRefGoogle ScholarPubMed
Thomas, M, Li, Z, Cook, D J, Greason, K L, Sundt, T M. Contemporary results of open aortic arch surgery. J Thorac Cardiovasc Surg. 2012; 144(4):838–44.CrossRefGoogle ScholarPubMed
Kragsterman, B, Logason, K, Ahari, A, et al. Risk factors for complications after carotid endarterectomy: a population-based study. Eur J Vasc Endovasc Surg. 2004; 28(1):98103.CrossRefGoogle ScholarPubMed
Halliday, A, Mansfield, A, Marro, J, et al. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial. Lancet. 2004; 363(9420):1491–502.Google ScholarPubMed
Brott, T G, Hobson, R W, 2nd, Howard, G, et al. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N Engl J Med. 2010; 363(1):1123.CrossRefGoogle ScholarPubMed
Halliday, A, Harrison, M, Hayter, E, et al. 10-year stroke prevention after successful carotid endarterectomy for asymptomatic stenosis (ACST-1): a multicentre randomised trial. Lancet. 2010; 376(9746):1074–84.CrossRefGoogle ScholarPubMed

References

Walker, A E, Robins, M, Weinfeld, F D. The National Survey of Stroke: Clinical findings. Stroke. 1981; 12:1344.Google ScholarPubMed
Kalfas, I H, Little, J R. Postoperative hemorrhage: a survey of 4992 intracranial procedures. Neurosurgery. 1988; 23: 343–7.Google ScholarPubMed
Palmer, J D, Sparrow, O C, Iannotti, F I. Postoperative hematoma: A 5-year survey and identification of avoidable risk factors. Neurosurgery. 1994; 35: 1061–5.CrossRefGoogle ScholarPubMed
MacMahon, S, Rodgers, A. Blood pressure, antihypertensive treatment and stroke risk. J Hypertens Suppl. 1994; 12: S514.Google ScholarPubMed
Cohen, Y C, Djulbegovic, B, Shamai-Lubovitz, O, Mozes, B. The bleeding risk and natural history of idiopathic thrombocytopenic purpura in patients with persistent low platelet counts. Arch Intern Med. 2000; 160: 1630–8.CrossRefGoogle ScholarPubMed
Biller, J, Feinberg, W M, Castaldo, JE, et al. Guidelines for carotid endarterectomy: A statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Circulation. 1998; 97: 501–9.CrossRefGoogle ScholarPubMed
Feinberg, W M, Albers, G W, Barnett, HJ, et al. Guidelines for the management of transient ischemic attacks. From the Ad Hoc Committee on Guidelines for the Management of Transient Ischemic Attacks of the Stroke Council of the American Heart Association. Circulation. 1994; 89: 2950–65.CrossRefGoogle Scholar
Korinth, M C. Low-dose aspirin before intracranial surgery – results of a survey among neurosurgeons in Germany. Acta Neurochir. 2006; 148: 1189–96.CrossRefGoogle ScholarPubMed
Benveniste, R, Germano, I M. Evaluation of factors predicting accurate resections of high-grade gliomas by using frameless image-guided stereotactic guidance. Neurosurgical Focus. 2003; 14: e5.CrossRefGoogle ScholarPubMed
Martin, A, Rojas, S, Chamorro, A, et al. Why does acute hyperglycemia worsen the outcome for transient focal cerebral ischemia? Role of corticosteroids, inflammation, and protein O-glycosylation. Stroke. 2006; 37: 1288–95.CrossRefGoogle ScholarPubMed
Nadig, A S, King, A T. Traumatic extradural haematoma revealed after contralateral decompressive craniectomy. Br J Neurosurg. 2012. www.ncbi.nlm.nih.gov/pubmed/22762248CrossRefGoogle Scholar
Sturiale, C L, De Bonis, P, Rigante, L, et al. Do traumatic brain contusions increase in size after decompressive craniectomy? J Neurotrauma. 2012; 29: 2723–26.CrossRefGoogle ScholarPubMed
Walcott, B P, Nahed, B V, Sheth, S A, et al. Bilateral hemicraniectomy in non-penetrating traumatic brain injury. J Neurotrauma. 2012; 29: 1879–85.CrossRefGoogle ScholarPubMed
Winn, H R, Richardson, A E, Jane, JA. The long-term prognosis in untreated cerebral aneurysm: A 10-year evaluation of 364 patients. Ann Neurolog. 1977; 1: 358–70.Google ScholarPubMed
Voldby, B, Enevoldsen, E M. Intracranial pressure changes following aneurysm rupture. Part 3: Recurrent hemorrhage. J Neurosurg. 1982; 56: 784–9.Google ScholarPubMed
Connolly, E S Jr, Kader, A A, Frazzini, V I, Winfree, C, Solomon, R A. The safety of intraoperative lumbar drainage for acutely ruptured intracranial aneurysm: Technical note. Surg Neurol. 1997; 48: 338–44.CrossRefGoogle ScholarPubMed
Rosenorn, J, Westergaard, L, Hansen, P H. Mannitol induced rebleeding from intracranial aneurysm: Case report. J Neurosurg. 1983; 59: 529–30.CrossRefGoogle Scholar
Graf, C J, Nibbelink, D W. Randomized treatment study: Intracranial surgery. In Sahs, A L and Nibbelink, D W, eds. Aneurysm Subarachnoid Hemorrhage: Report of the Cooperative Study. Baltimore: Urban and Schwarzenburg. 1981; 145202.Google Scholar
Schramm, J, Cedzich, C. Outcome and management of intraoperative aneurysm rupture. Surg Neurol. 1993; 40: 2630.CrossRefGoogle ScholarPubMed
Ondra, S L, Troupp, H, George, E D, Schwab, K. The natural history of symptomatic arteriovenous malformations of the brain: A 24-year follow-up assessment. J Neurosurg. 1990; 73: 387–91.CrossRefGoogle ScholarPubMed
Kondziolka, D, McLaughlin, M R, Kestle, J R W. Simple risk predictors for arteriovenous malformations hemorrhage. Neurosurgery. 1995; 37: 851–5.CrossRefGoogle Scholar
Baijim van Beijnum, J, van der Worp, H B, Buis, D R, et al. Treatment of brain arteriovenous malformations: a systematic review and meta-analysis. JAMA. 2011; 306: 2011–19.Google ScholarPubMed
Spetzler, R F, Wilson, C B, Weinstein, P, et al. Normal perfusion pressure breakthrough theory. Clin Neurosurg. 1978; 25: 651–72.CrossRefGoogle ScholarPubMed
al-Rodhan, N R, Sundt, T M, Piepgras, D G, et al. Occlusive hyperemia: A theory of the hemodynamic complications following resection of intracerebral arteriovenous malformations. J Neurosurg. 1993; 78: 167–75.CrossRefGoogle ScholarPubMed
Landriel Ibañez, F A, Hem, S, Ajler, P, et al. A new classification of complications in neurosurgery. World Neurosurg. 2011; 75: 709–15.Google ScholarPubMed

References

Rosengart, A J, Schultheiss, K E, Tolentino, J, Macdonald, R L. Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2007; 38: 2315–21.CrossRefGoogle ScholarPubMed
Rabinstein, A A, Weigand, S, Atkinson, J L, Wijdicks, E F. Patterns of cerebral infarction in aneurysmal subarachnoid hemorrhage. Stroke. 2005; 36: 992–7.CrossRefGoogle ScholarPubMed
Nornes, H. The role of intracranial pressure in the arrest of hemorrhage in patients with ruptured intracranial aneurysm. J Neurosurg. 1973; 39: 226–34.CrossRefGoogle ScholarPubMed
Dreier, J P, Ebert, N, Priller, J, et al. Products of hemolysis in the subarachnoid space inducing spreading ischemia in the cortex and focal necrosis in rats: A model for delayed ischemic neurological deficits after subarachnoid hemorrhage? J Neurosurg. 2000; 93: 658–66.CrossRefGoogle Scholar
Ostrowski, R P, Colohan, A R, Zhang, J H. Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res. 2006; 28: 399414.CrossRefGoogle ScholarPubMed
Vergouwen, M D, Vermeulen, M, van Gijn, J, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: Proposal of a multidisciplinary research group. Stroke. 2010; 41: 2391–5.CrossRefGoogle Scholar
Schmidt, J M, Wartenberg, K E, Fernandez, A, et al. Frequency and clinical impact of asymptomatic cerebral infarction due to vasospasm after subarachnoid hemorrhage. J Neurosurg. 2008; 109: 1052–9.CrossRefGoogle ScholarPubMed
Baldwin, M E, Macdonald, R L, Dezheng, H, et al. Early vasospasm on admission angiography in patients with aneurysmal subarachnoid haemorrhage is a predictor for in-hospital complications and poor outcome. Stroke. 2004; 35: 2506–11.CrossRefGoogle ScholarPubMed
Cahill, J, Calvert, J W, Zhang, J H. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006; 26: 1341–53.CrossRefGoogle ScholarPubMed
Pluta, R M. Delayed cerebral vasospasm and nitric oxide: Review, new hypothesis, and proposed treatment. Pharmacol Ther. 2005; 105: 2356.CrossRefGoogle ScholarPubMed
Seifert, V, Loffler, B M, Zimmermann, M, Roux, S, Stolke, D. Endothelin concentrations in patients with aneurysmal subarachnoid hemorrhage. Correlation with cerebral vasospasm, delayed ischemic neurological deficits, and volume of hematoma. J Neurosurg. 1995; 82: 5562.CrossRefGoogle ScholarPubMed
Sehba, F A, Bederson, J B. Mechanisms of acute brain injury after subarachnoid hemorrhage. Neurol Res. 2006; 28: 381–98.CrossRefGoogle ScholarPubMed
Turner, C P, Bergeron, M, Matz, P, et al. Heme oxygenase-1 is induced in glia throughout brain by subarachnoid hemoglobin. J Cereb Blood Flow Metab. 1998; 18: 257–73.CrossRefGoogle ScholarPubMed
Dietrich, H H, Dacey, R G Jr. Molecular keys to the problems of cerebral vasospasm. Neurosurgery. 2000; 46: 517–30.CrossRefGoogle Scholar
Nishizawa, S, Laher, I. Signaling mechanisms in cerebral vasospasm. Trends Cardiovasc Med. 2005; 15: 2434.CrossRefGoogle ScholarPubMed
Zimmermann, M, Seifert, V. Endothelin and subarachnoid hemorrhage: An overview. Neurosurgery. 1998; 43: 863–75.CrossRefGoogle ScholarPubMed
Fassbender, K, Hodapp, B, Rossol, S, et al. Endothelin-1 in subarachnoid hemorrhage: An acute-phase reactant produced by cerebrospinal fluid leukocytes. Stroke. 2000; 31: 2971–5.CrossRefGoogle ScholarPubMed
Macdonald, R L, Higashida, R T, Keller, E, et al. Randomized trial of clazosentan in patients with aneurysmal subarachnoid hemorrhage undergoing endovascular coiling. Stroke. 2012; 43: 1463–9.CrossRefGoogle ScholarPubMed
Luders, J C, Weihl, C C, Lin, G, et al. Adenoviral gene transfer of nitric oxide synthase increases cerebral blood flow in rats. Neurosurgery. 2000; 47: 1206–14.CrossRefGoogle ScholarPubMed
Clatterbuck, R E, Gailloud, P, Tierney, T, et al. Release of a nitric oxide donor for the prevention of delayed cerebral vasospasm following experimental subarachnoid hemorrhage in nonhuman primates. J Neurosurg. 2005; 103: 745–51.CrossRefGoogle ScholarPubMed
Tierney, T S, Pradilla, G, Wang, P P, Clatterbuck, R E, Tamargo, R J. Intracranial delivery of the nitric oxide donor diethylenetriamine/nitric oxide from a controlled-release polymer: Toxicity in cynomolgus monkeys. Neurosurgery. 2006; 58: 952–60.CrossRefGoogle ScholarPubMed
Pluta, R M, Dejam, A, Grimes, G, Gladwin, M T, Oldfield, E H. Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. JAMA. 2005; 293: 1477–84.CrossRefGoogle Scholar
McGirt, M J, Lynch, J R, Parra, A, et al. Simvastatin increases endothelial nitric oxide synthase and ameliorates cerebral vasospasm resulting from subarachnoid hemorrhage. Stroke. 2002; 33: 2950–6.CrossRefGoogle ScholarPubMed
McGirt, M J, Pradilla, G, Legnani, F G, et al. Systemic administration of simvastatin after the onset of experimental subarachnoid hemorrhage attenuates cerebral vasospasm. Neurosurgery. 2006; 58: 945–51.CrossRefGoogle ScholarPubMed
Tseng, M Y, Czosnyka, M, Richards, H, Pickard, J D, Kirkpatrick, P J. Effects of acute treatment with pravastatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneurysmal subarachnoid hemorrhage: A phase II randomized placebo-controlled trial. Stroke. 2005; 36: 1627–32.CrossRefGoogle ScholarPubMed
Dreier, J P, Korner, K, Ebert, N, et al. Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by n-nitro-l-arginine induces cortical spreading ischemia when K+ is increased in the subarachnoid space. J Cereb Blood Flow Metab. 1998; 18: 978–90.CrossRefGoogle ScholarPubMed
Ishiguro, M, Wellman, T L, Honda, A, et al. Emergence of a R-type Ca2+ channel (CAV 2.3) contributes to cerebral artery constriction after subarachnoid hemorrhage. Circ Res. 2005; 96: 419–26.CrossRefGoogle ScholarPubMed
Pluta, R M, Hansen-Schwartz, J, Dreier, J, et al. Cerebral vasospasm following subarachnoid hemorrhage: Time for a new world of thought. Neurol Res. 2009; 31: 151–8.CrossRefGoogle ScholarPubMed
Kusaka, G, Ishikawa, M, Nanda, A, Granger, D N, Zhang, J H. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004; 24: 916–25.CrossRefGoogle ScholarPubMed
Birse, S H, Tom, M I. Incidence of cerebral infarction associated with ruptured intracranial aneurysms. A study of 8 unoperated cases of anterior cerebral aneurysm. Neurology. 1960; 10: 101–6.CrossRefGoogle ScholarPubMed
Dreier, J P, Woitzik, J, Fabricius, M, et al. Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain. 2006; 129: 3224–37.CrossRefGoogle ScholarPubMed
Stein, S C, Levine, J M, Nagpal, S, LeRoux, P D. Vasospasm as the sole cause of cerebral ischemia: how strong is the evidence? Neurosurg Focus. 2006; 21: E2.CrossRefGoogle Scholar
Park, S, Yamaguchi, M, Zhou, Z, et al. Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke. 2004; 35: 2412–17.CrossRefGoogle ScholarPubMed
Fisher, C M, Kistler, J P, Davis, J M. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery, 1980; 6: 19.CrossRefGoogle ScholarPubMed
Kistler, J P, Crowell, R M, Davis, K R. The relation of cerebral vasospasm to the extent and location of subarachnoid blood visualized by CT scan: A prospective study. Neurology, 1983; 33: 424–36.CrossRefGoogle Scholar
Claassen, J, Bernardini, G L, Kreiter, K et al. Effect of cisternal and ventricular blood on risk of delayed cerebral ischemia after subarachnoid hemorrhage: The Fisher scale revisited. Stroke. 2001; 32: 2012–20.CrossRefGoogle Scholar
Connolly, E S Jr., Rabinstein, A, Carhuapoma, J R, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: A statement for healthcare professionals from a special writing group of the stroke council, American Heart Association. Stroke. 2012; 43: 1711–37.CrossRefGoogle Scholar
Diringer, M N, Bleck, T P, Claude Hemphill, J 3rd, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: Recommendations from the Neurocritical Care Society’s multidisciplinary consensus conference. Neurocrit Care. 2011; 15: 211–40.CrossRefGoogle ScholarPubMed
Washington, C W, Zipfel, G J. Detection and monitoring of vasospasm and delayed cerebral ischemia: A review and assessment of the literature. Neurocrit Care. 2011; 15: 312–17.CrossRefGoogle ScholarPubMed
Sloan, M A, Alexandrov, A V, Tegeler, C H, et al. Assessment: Transcranial Doppler ultrasonography: Report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology. Neurology. 2004; 62: 1468–81.CrossRefGoogle Scholar
Harrigan, M R, Magnano, C R, Guterman, L R, Hopkins, L N. Computed tomographic perfusion in the management of aneurysmal subarachnoid hemorrhage: New application of an existent technique. Neurosurgery. 2005; 56: 304–17.CrossRefGoogle ScholarPubMed
Greenberg, E D, Gold, R, Reichman, M, et al. Diagnostic accuracy of CT angiography and CT perfusion for cerebral vasospasm: A meta-analysis. Am J Neuroradiol. 2010; 31: 1853–60.CrossRefGoogle ScholarPubMed
Stocchetti, N. Triggers for aggressive interventions in subarachnoid hemorrhage. Neurocrit Care. 2011; 15: 324–8.CrossRefGoogle ScholarPubMed
Hanggi, D. Monitoring and detection of vasospasm II: EEG and invasive monitoring. Neurocrit Care. 2011; 15: 318–23.CrossRefGoogle ScholarPubMed
Dorhout Mees, S M, Rinkel, G J, Feigin, V L, et al. Calcium antagonists for aneurysmal subarachnoid hemorrhage. Stroke. 2008; 39: 514–15.Google Scholar
Philippon, J, Grob, R, Dagreou, F, et al. Prevention of vasospasm in subarachnoid haemorrhage. A controlled study with nimodipine. Acta Neurochirurgica. 1986; 82: 110–14.CrossRefGoogle ScholarPubMed
Treggiari, M M, Walder, B, Suter, P M, Romand, J A. Systematic review of the prevention of delayed ischemic neurological deficits with hypertension, hypervolemia, and hemodilution therapy following subarachnoid hemorrhage. J Neurosurg. 2003; 98: 978–84.CrossRefGoogle ScholarPubMed
Rinkel, G J, Feigin, V L, Algra, A, van Gijn, J. Circulatory volume expansion therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. 2004; CD000483.CrossRefGoogle Scholar
Hasan, D, Vermeulen, M, Wijdicks, E F, Hijdra, A, van Gijn, J. Effect of fluid intake and antihypertensive treatment on cerebral ischemia after subarachnoid hemorrhage. Stroke. 1989; 20: 1511–15.CrossRefGoogle ScholarPubMed
Wong, G K, Poon, W S, Chan, M T, et al. Intravenous magnesium sulphate for aneurysmal subarachnoid hemorrhage (IMASH): A randomized, double-blinded, placebo-controlled, multicenter phase III trial. Stroke. 2010; 41: 921–6.CrossRefGoogle Scholar
Dorhout Mees, S M, Algra, A, et al. Magnesium for aneurysmal subarachnoid haemorrhage (MASH-2): A randomised placebo-controlled trial. Lancet. 2012; 380: 44–9.Google ScholarPubMed
Tseng, M Y. Summary of evidence on immediate statins therapy following aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2011; 15: 298301.CrossRefGoogle ScholarPubMed
Zwienenberg-Lee, M, Hartman, J, Rudisill, N, et al. Effect of prophylactic transluminal balloon angioplasty on cerebral vasospasm and outcome in patients with Fisher grade III subarachnoid hemorrhage: Results of a phase II multicenter, randomized, clinical trial. Stroke. 2008; 39: 1759–65.CrossRefGoogle ScholarPubMed
Diringer, M N, Axelrod, Y. Hemodynamic manipulation in the neuro-intensive care unit: Cerebral perfusion pressure therapy in head injury and hemodynamic augmentation for cerebral vasospasm. Curr Opin Crit Care. 2007; 13: 156–62.CrossRefGoogle Scholar
Lee, K H, Lukovits, T, Friedman, J A. “Triple-H” therapy for cerebral vasospasm following subarachnoid hemorrhage. Neurocrit Care. 2006; 4: 6876.CrossRefGoogle ScholarPubMed
Meyer, R, Deem, S, Yanez, N D, et al. Current practices of triple-H prophylaxis and therapy in patients with subarachnoid hemorrhage. Neurocrit Care. 2011; 14: 2436.CrossRefGoogle ScholarPubMed
Platz, J, Guresir, E, Vatter, H, et al. Unsecured intracranial aneurysms and induced hypertension in cerebral vasospasm: Is induced hypertension safe? Neurocrit Care. 2011; 14: 168–75.CrossRefGoogle Scholar
Le Roux, P D. Anemia and transfusion after subarachnoid hemorrhage. Neurocrit Care. 2011; 15: 342–53.CrossRefGoogle ScholarPubMed
Naidech, A M, Shaibani, A, Garg, R K, et al. Prospective, randomized trial of higher goal hemoglobin after subarachnoid hemorrhage. Neurocrit Care. 2011; 13: 313–20.Google Scholar
Frontera, J A, Fernandez, A, Schmidt, J M, et al. Clinical response to hypertensive hypervolemic therapy and outcome after subarachnoid hemorrhage. Neurosurgery. 2010; 66: 3541.CrossRefGoogle ScholarPubMed
Kimball, M M, Velat, G J, Hoh, B L. Critical care guidelines on the endovascular management of cerebral vasospasm. Neurocrit Care. 2011; 15: 336–41.CrossRefGoogle ScholarPubMed
Stuart, R M, Helbok, R, Kurtz, P, et al. High-dose intra-arterial verapamil for the treatment of cerebral vasospasm after subarachnoid hemorrhage: Prolonged effects on hemodynamic parameters and brain metabolism. Neurosurgery. 2011; 68: 337–45.CrossRefGoogle ScholarPubMed
Tejada, J G, Taylor, R A, Ugurel, M S, et al. Safety and feasibility of intra-arterial nicardipine for the treatment of subarachnoid hemorrhage-associated vasospasm: Initial clinical experience with high-dose infusions. Am J Neuroradiol. 2007; 28: 844–8.Google ScholarPubMed
Shankar, J J, dos Santos, M P, Deus-Silva, L, Lum, C. Angiographic evaluation of the effect of intra-arterial milrinone therapy in patients with vasospasm from aneurysmal subarachnoid hemorrhage. Neuroradiology. 2011; 53: 123–8.CrossRefGoogle ScholarPubMed
Jestaedt, L, Pham, M, Bartsch, A J, et al. The impact of balloon angioplasty on the evolution of vasospasm-related infarction after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2008; 62: 610–17.CrossRefGoogle ScholarPubMed

References

Vera, R, Lago, A, Fuentes, B, et al. In-hospital stroke: a multi-centre prospective registry. European J Neurology. 2011; 18:170–6.CrossRefGoogle ScholarPubMed
Nadav, L, Gur, A Y, Korczyn, A D, Bornstein, N M. Stroke in hospitalized patients: are there special factors? Cerebrovasc Dis. 2002; 13:127–31.CrossRefGoogle Scholar
Farooq, M U, Reeves, M J, Gargano, J, et al. In-hospital stroke in a statewide stroke registry. Cerbrovasc Dis. 2008; 25:1220.CrossRefGoogle Scholar
Blacker, D J. In-hospital stroke. Lancet Neurol. 2003; 2:741–6.CrossRefGoogle ScholarPubMed
Budaj, A, Flasinska, K, Goer, J M, et al. Magnitude of and risk factors for in-hospital and postdischarge stroke in patients with acute coronary syndromes: Findings from a Global Registry of Acute Coronary Events. Circulation. 2005; 111:3242–7.CrossRefGoogle ScholarPubMed
Mahaffey, K W, Granger, C B, Sloan, M A, et al for the GUSTO-1 Investigators. Risk factors for in-hospital nonhemorrhagic stroke in patients with acute myocardial infarction treated with thrombolysis. Circulation. 1998; 97:757–64.CrossRefGoogle ScholarPubMed
Waldo, A L, Becker, R C, Tapson, V F, Colgan, K J for the NABOR steering committee. Hospitalized patients with atrial fibrillation and a high risk of stroke are not being provided with adequate anticoagulation. J Am Coll Cardiol. 2005; 46:1729–36.CrossRefGoogle Scholar
Habib, G. Management of infective endocarditis. Heart. 2006; 92:124–30.CrossRefGoogle ScholarPubMed
Adams, H P, del Zoppo, G, Alberts, M J, et al. Guidelines for the early management of adults with ischemic stroke. Stroke. 2007; 38:1655–711.CrossRefGoogle ScholarPubMed
De Sliva, D A, Manzano, J J F, Chang, H M, Wong, M C. Reconsidering recent myocardial infarction as a contraindication for IV stroke thrombolysis. Neurology. 2011; 76:1838–40.Google Scholar
Sandset, E C, Bath, P M, Boysen, G, et al. The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double blind trial. Lancet. 2011; 377:741–50.CrossRefGoogle ScholarPubMed
Beer, C, Blacker, D, Bynevelt, M, Hankey, G J, Puddey, I B. A randomised placebo controlled trial of early ischemic stroke with atorvastatin and irbesartan. Int J Stroke. 2012; 7:104–11.CrossRefGoogle ScholarPubMed
Sontineni, S P, Moos, A N, Andukari, V G, Schima, S M, Esterbrooks, D. Effectiveness of thrombolytic in acute embolic stroke due to infective endocarditis. Stroke Res Treat. 2010; 2010:841797.Google ScholarPubMed
Dabeabneh, H, Hedna, VS, Ford, J, et al. Endovascular intervention for acute stroke due to infective endocarditis: a case report. Neurosurg Focus. 2012; 32:E1.CrossRefGoogle Scholar
Diringer, M N, Skolnick, B E, Mayer, S A, et al. Thromboembolic events with recombinant factor VII in spontaneous intracerebral hemorrhage: results from the Factor Seven for Acute Hemorrhagic Stroke (FAST) trial. Stroke. 2010; 41:4853.CrossRefGoogle ScholarPubMed
Phan, T G, Koh, M, Wijdicks, E F. Safety of discontinuation of anticoagulation in patients with intracranial hemorrhage at high thromboembolic risk. Arch Neurol. 2000; 57:1710–13.CrossRefGoogle ScholarPubMed
Diener, H C, Bogousslavsky, J, Brass, L M, et al. Aspirin and Clopidogrel Compared with Clopidogrel Alone after Recent Ischaemic Stroke or Transient Ischaemic Attack in High-risk Patients (MATCH): Randomised, double-blind, placebo-controlled trial. Lancet. 2004; 364:331–7.CrossRefGoogle ScholarPubMed
Bhatt, D L, Fox, K A, Hacke, W, et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N Engl J Med. 2006; 354:1706–17.CrossRefGoogle ScholarPubMed
Wang, Y, Wang, Y, Zhao, X, et al. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N Engl J Med. 2013; 369:1119.CrossRefGoogle ScholarPubMed
Fisher, M, Loscalzo, J. The perils of antithrombotic therapy and potential resolutions. Circulation. 2011; 123:232–5.CrossRefGoogle ScholarPubMed
Petty, G W, Brown, R D, Whisnant, J P, et al. Ischemic stroke subtypes: a population–based study of functional outcome, survival and recurrence. Stroke. 2000; 31:1062–8.CrossRefGoogle ScholarPubMed
Rothwell, P M, Eliasziw, M, Gutnikov, S A, Warlow, C P, Barnett, H J. Carotid Endarterectomy Trialists Collaboration. Endarterectomy for symptomatic carotid stenosis in relation to clinical subgroups and timing of surgery. Lancet. 2004; 363:915–24.CrossRefGoogle ScholarPubMed
Brott, T G, Hobson, R W 2nd, Howard, G, et al. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N Engl J Med. 2010; 363:1123.CrossRefGoogle ScholarPubMed
Hill, M D, Shrive, F M, Kennedy, J, Feasby, T E, Ghali, W A. Simultaneous carotid endarterectomy and coronary artery bypass surgery in Canada. Neurology. 64:1435–7.Google Scholar
Naylor, A R, Mehta, Z, Rothwell, P M. A systematic review and meta-analysis of 30-day outcomes following staged carotid artery stenting and coronary bypass. Eur J Vasc Endovasc Surg. 2009; 37:379–84.CrossRefGoogle ScholarPubMed
Blacker, D J, Flemming, K D, Link, M J, Brown, R D. The pre-operative cerebrovascular consultation: common cerebrovascular questions before general or cardiac surgery. Mayo Clin Proc. 2004; 79:223–9.CrossRefGoogle ScholarPubMed
Tendera, M, Aboyans, V, Bartelink, M, et al. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases. European Heart Journal. 2011; 32:2851–906.Google ScholarPubMed
Anstwurm, K, Borges, A C, Halle, E, et al. Timing the valve replacement in infective endocarditis involving the brain. J Neurol. 2004; 251:1220–6.Google Scholar
Eckman, M H, Rosand, J, Knudsen, K A, Singer, D E, Greenberg, S M. Can patients be anticoagulated after intracerebral hemorrhage? A decision analysis. Stroke. 2003; 34:1710–16.CrossRefGoogle ScholarPubMed
Paciaroni, M, Agnelli, G. Should oral anticoagulants be restarted after warfarin-associated cerebral haemorrhage in patients with atrial fibrillation? Thrombosis and Haemostasis. 2014; 111:1418.Google ScholarPubMed
Holmes, D R, Reddy, D Y, Turi, Z G, et al. Percutaneous closure of the left atrial appendix versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial. Lancet. 2009; 374:534–42.CrossRefGoogle Scholar
Connolly, S J, Ezekowitz, M D, Yusuf, S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009; 361:1139–51.CrossRefGoogle ScholarPubMed
Granger, C B, Alexander, J H, McMurray, J J, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011; 365:981–92.CrossRefGoogle ScholarPubMed
Patel, M R, Mahaffey, K W, Garg, J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011; 365:883–91.CrossRefGoogle ScholarPubMed
Hankey, G J. Intracranial hemorrhage and novel anticoagulants for atrial fibrillation: What have we learned? Curr Cardiol Rep. 2014; 16:480.CrossRefGoogle ScholarPubMed
Caress, J B, Cartwright, M S, Donofrio, P D, Peacock, J D. The clinical features of 16 cases of stroke associated with the administration of IVIG. Neurology. 2003; 60:1822–4.CrossRefGoogle ScholarPubMed
Incecik, F, Herquner, M O, Altunbasak, S, Yildizdas, D. Reversible posterior encephalopathy syndrome due to intravenous immunoglobulin in a child with Guillain-Barre syndrome. J Paediatr Neurosci. 2011; 6:138–40.CrossRefGoogle Scholar
Townsend, R R. Stroke in chronic kidney disease: prevention and management. Clin J Am Soc Nephrol. 2008; 33:S11S16.CrossRefGoogle Scholar
Seliger, S L, Gillen, D L, Longstreth, W T, Kestenbaum, B. Stehman-Breen, C O. Elevated risk of stroke among patients with end-stage renal disease. Kidney International. 2003; 64:603–9.CrossRefGoogle ScholarPubMed
Farhoudi, M, Azar, S A, Abdi, R. Brain hemodynamics in patients with end-stage renal disease between hemodialysis sessions. IJKD. 2012; 6:110–13.Google ScholarPubMed
Rothwell, P M. Does blood pressure variability modulate cardiovascular risk? Curr Hypertens Rep. 2011; 13:177–86.CrossRefGoogle ScholarPubMed
Agrawal, V, Rai, B, Fellows, J, McCullough, P A. In-hospital outcomes with thrombolytic therapy in patients with renal dysfunction presenting with acute ischemic stroke. Nephrol Dial Transplant. 2010; 25:1150–7.CrossRefGoogle Scholar
Tutuncu, S, Ziegler, A M, Scheitz, J F, et al. Severe renal impairment is associated with symptomatic intracerebral hemorrhage after thrombolysis for ischemic stroke. Stroke. 2013; 44:3217–19.CrossRefGoogle ScholarPubMed
Palacio, S, Gonzales, N R, Sangha, N S, Birnbaum, L A, Hart, R G. Thrombolysis for acute stroke in hemodialysis: international survey of expert opinion. Clin J Am Soc Nephrol. 2006; 1:1357–9.Google Scholar
Bennett, W M. Should dialysis patients ever receive warfarin and for what reasons? Clin J Am Soc Nephrol. 2006; 1:1357–9.CrossRefGoogle ScholarPubMed
Verheugt, F W, Granger, C B. Oral anticoagulants for stroke prevention in atrial fibrillation: Current status, special situations, and unmet needs. Lancet. 2015; 386:303–10.CrossRefGoogle ScholarPubMed
Ng, K P, Edwards, N C, Lip, G Y, Townend, J N, Ferro, C J. Atrial fibrillation in CKD: Balancing the risks and benefits of anticoagulation. American Journal of Kidney Diseases. 2013; 62:615–32.CrossRefGoogle ScholarPubMed
Kruger, T, Brandenburg, V, Schlieper, G, Marx, N, Floege, J. Sailing between scylla and charybdis: Oral long-term anticoagulation in dialysis patients. Nephrology, Dialysis, Transplantation. 2013; 28:534–41.CrossRefGoogle ScholarPubMed
Camm, A J, Lip, G Y, De Caterina, R, et al. Focused update of the ESC guidelines for the management of atrial fibrillation: An update of the 2010 ESC guidelines for the management of atrial fibrillation. Developed with the special contribution of the European Heart Rhythm Association. Eur Heart J. 2012; 33:2719–47.Google ScholarPubMed
Bang, O Y, Seok, J M, Kim, S G, et al. Ischemic stroke and cancer: stroke severely impacts cancer patients, while cancer increases the number of strokes. J Clin Neurol. 2011; 7:53–9.CrossRefGoogle ScholarPubMed
Schwarzbach, C J. Systemic thrombolysis in cancer patients: is it safe and effective? Cerebrovasc Dis. 2012; Supp 2:64.Google Scholar
Khorana, A A. Cancer and thrombosis: implications of published guidelines for clinical practice. Annals of Oncology. 2009; 20:1619–30.CrossRefGoogle ScholarPubMed
Coplin, W M, Cochran, M S, Levine, S R, Crawford, S W. Stroke after bone marrow transplantation. Frequency, aetiology and outcome. Brain. 2001; 124:1043–51.CrossRefGoogle ScholarPubMed
Finkelstein, J, Cha, E, Scharf, S. Chronic obstructive pulmonary disease as an independent risk factor for cardiovascular morbidity. International Journal of COPD. 2009; 4:337–49.Google Scholar
Seok, H Y, Seo, W, Eun, M, et al. Transient increase in intrathoracic pressure as a contributing factor to cardioembolic stroke. J Clin Neurol. 2010; 6:212–15.CrossRefGoogle ScholarPubMed
Tan, S, Humphrey, G, Miles, P. Stroke due to carotid artery dissection. Postgrad Med J. 1991; 67:588–9.CrossRefGoogle ScholarPubMed
Harms, H, Prass, K, Meisel, C, et al. Preventive antibacterial therapy in acute ischemic stroke: A randomised controlled trial (PATHERIS). PLoS ONE. 2008; 3(5):e2158.CrossRefGoogle Scholar
Ling, L, He, X, Zeng, J, Lian, G Z. In-hospital cerebrovascular complications following orthotopic liver transplantation: A retrospective study. BMC Neurology. 2008; 8:52.CrossRefGoogle ScholarPubMed
Joshi, D, Dickel, T, Aga, R, Smith-Laing, G. Stroke in inflammatory bowel disease: A report of two cases and review of the literature. Thrombosis Journal. 2008; 6:2.CrossRefGoogle ScholarPubMed
Moris, G. Inflammatory bowel disease: An increased risk factor for neurologic complications. World Journal of Gastroenterology. 2014; 20:1228–37.CrossRefGoogle ScholarPubMed
Cognat, E, Crassard, I, Denier, C, Vahedi, K, Bousser, M G. Cerebral venous thrombosis in inflammatory bowel diseases: eight cases and literature review. Int J Stroke. 2011; 6:487–92.CrossRefGoogle ScholarPubMed
Andersohn, F, Waring, M, Garbe, E. Risk of ischemic stroke in patients with Crohn’s disease: A population-based nested case-control study. Inflamm Bowel Dis. 2010; 16:1387–92.CrossRefGoogle ScholarPubMed
Singh, S, Singh, H, Loftus, E V Jr., Pardi, D S. Risk of cerebrovascular accidents and ischemic heart disease in patients with inflammatory bowel disease: A systematic review and meta-analysis. Clinical Gastroenterology and Hepatology. 2014; 12:382–93.Google ScholarPubMed
Yamamoto, Y, Nishiyama, Y, Katsura, K, Yamazaki, M, Katayama, Y. Hepatic encephalopathy with reversible focal neurologic signs resembling acute stroke: case report. J Stroke Cerebrovasc Dis. 2011; 20:377–80.CrossRefGoogle ScholarPubMed
Brosch, J R, Janicki, M J. Intra-arterial thrombolysis as an ideal treatment for inflammatory bowel disease related thromboembolic stroke: A case report and review. Int J Neurosci. 2012; 122:541–4.CrossRefGoogle Scholar
Chen, H, Wang, C, Lee, H, et al. Short-term case fatality rate and associated factors among inpatients with diabetic ketoacidosis and hyperglycaemic hyperosmolar state: A hospital-based analysis over a 15 year period. Inter Med. 2010; 49:729–37.CrossRefGoogle Scholar
Foster, J R, Morrison, G, Fraser, D D. Diabetic ketoacidosis-associated stroke in children. Stroke Research and Treatment. 2011; doi:10.4061/2011/219706.CrossRefGoogle Scholar
Wahlgren, N, Ahmed, N, Eriksson, N, et al. Multivariable analysis of outcome predictors and adjustment of main outcome results to baseline data profile in randomised controlled trials. Safe Implementation of Thrombolysis in Stroke Monitoring Study (SITS-MOST). Stroke. 2008; 39:3316–22.CrossRefGoogle ScholarPubMed
Hacke, W, Kaste, M, Bluhmki, E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischaemic stroke. N Engl J Med. 2008; 359:1371–29.CrossRefGoogle Scholar
Bellolio, M F, Gilmore, R M, Stead, L G. Insulin for glycaemic control in acute ischaemic stroke. Cochrane Database Syst Rev. 2011; 9:CD005346.Google Scholar
Hardie, K, Hankey, G J, Jamrozik, K, Broadhurst, R J, Anderson, C. Ten year survival after first-ever stroke in the Perth community stroke study. Stroke. 2003; 34:1842–6.CrossRefGoogle ScholarPubMed
Douglas, I J, Smeeth, L. Exposure to antipsychotics and risk of stroke: self controlled case series study. BMJ. 2008; 337a1277, doi:10.1136/bmj.a1277.CrossRefGoogle Scholar
Wang, S, Liknkletter, C, Dore, D, et al. Age, antipsychotics, and the risk of ischemic stroke in the veterans health administration. Stroke. 2012; 43:2831.CrossRefGoogle ScholarPubMed
Lin, H C, Hsiao, F H, Pfeiffer, S, Hwang, Y T, Lee, H S. An increased risk of stroke among young schizophrenia patients. Schizophrenia Research. 2008; 101:234–41.CrossRefGoogle ScholarPubMed
Pan, A, Okereke, O I, Sun, Q, et al. Depression and incident stroke in women. Stroke. 2011; 42:2770–5.CrossRefGoogle ScholarPubMed
Chernyshev, O Y, Martin-Schild, S, Albright, KC, et al. Safety of tPA in stroke mimics and neuroimaging-negative cerebral ischemia. Neurology. 2010; 74:1340–5.CrossRefGoogle ScholarPubMed

References

Farooq, M U, Reeves, M J, Gargano, J, et al. In-hospital stroke in a statewide registry. Cerebrovasc Dis. 2008; 25:1220.CrossRefGoogle Scholar
Blacker, D J, Wijdicks, E F. Clinical characteristics and mechanisms of stroke after polytrauma. Mayo Clin Proc. 2004; 79:630–5.CrossRefGoogle ScholarPubMed
Cothren, C C, Moore, E E. Blunt cerebrovascular injuries. Clinics. 2005; 60:489–96.CrossRefGoogle ScholarPubMed
Lucas, C, Moulin, T, Deplanque, D, Tatu, L, Chavot, D. Stroke patterns of internal carotid artery dissection in 40 patients. Stroke. 1998; 29:2646–8.CrossRefGoogle ScholarPubMed
Mokri, B, Piepgras, D G, Houser, O W. Traumatic dissections of the extracranial internal carotid artery. J Neurosurg. 1988; 68:189–97.CrossRefGoogle ScholarPubMed
Ringer, A J, Matern, E, Parikh, S, Levine, N B. Screening for blunt cerebrovascular injury: selection criteria for use of angiography. J Neurosurg. 2010; 112:1146–9.CrossRefGoogle ScholarPubMed
Wang, A C, Charters, M A, Thawani, J P, et al. Evaluating the use and utility of noninvasive angiography in diagnosing traumatic blunt cerebrovascular injury. J Trauma Acute Care Surg. 2012; 72:1601–10.CrossRefGoogle ScholarPubMed
Clancy, T V, Gary, M J, Covington, D L, Brinker, C C, Blackman, D. A statewide analysis of level I and II trauma centers for patients with major injuries. J Trauma. 2001; 51:346–51.CrossRefGoogle Scholar
Corti, R, Alerci, M, Tosi, C, et al. Images in cardiovascular medicine. Cerebral arterial embolism from a protruding atheroma of the aortic arch after a nonpenetrating chest trauma. Circulation. 1999; 100:1009–10.CrossRefGoogle ScholarPubMed
Dennis, M S, Lo, K M, McDowall, M, West, T. Fractures after stroke. Stroke. 2002; 33:728–34.CrossRefGoogle ScholarPubMed
Jauch, E C, Saver, J L, Adams, H P, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013; 44:870947.CrossRefGoogle ScholarPubMed
Ahmad, N, Ward, E, Natarajan, I, Roffe, C. Intravenous stroke thrombolysis in the presence of traumatic bone fractures. Cerebrovasc Dis. 2012; Supp 2:83.Google Scholar
Cohen, J E, Gomori, J M, Grigoriadis, S, et al. Intra-arterial thrombolysis and stent placement for traumatic carotid dissection with subsequent stroke: A combined simultaneous endovascular approach. J Neurol Sciences. 2008; 269:172–5.CrossRefGoogle ScholarPubMed
Sugrue, P A, Hage, Z A, Surdell, D L, et al. Basilar artery occlusion following C1 lateral mass fracture managed by mechanical and pharmacological thrombolysis. Neurocritical Care. 2009; 11:255–60.CrossRefGoogle ScholarPubMed
Furlan, A J. Endovascular therapy for stroke: it’s about time. N Engl J Med. 2015; 45:35–8.Google Scholar
Powers, W J, Derdeyn, C P, Biller, J, et al. AHA/ASA focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment. Stroke. 2015; published before print June 29, 2015.Google Scholar
Stein, D M, Boswell, S, Sliker, C W, Lui, F Y, Scalea, T M. Blunt cerebrovascular injuries: does treatment always matter? J Trauma. 2009; 66:132–43.Google ScholarPubMed
Cothren, C C, Biffl, W L, Moore, E E, Kashuk, J L, Johnson, J L. Treatment for blunt cerebrovascular injuries: equivalence of anticoagulation and antiplatelet agents. Arch Surg. 2009; 144:685–90.CrossRefGoogle ScholarPubMed
Callcut, R A, Hanseman, D J, Solan, P D, et al. Early treatment of blunt cerebrovascular injury with concomitant hemorrhagic neurological injury is safe and effective. J Trauma Acute Care Surg. 2012; 72:338–45.CrossRefGoogle ScholarPubMed
Davis, J W, Holbrook, T L, Hoyt, D B, et al. Blunt carotid dissection: incidence, associated injuries, screening and treatment. J Trauma. 1990; 30:1514–17.CrossRefGoogle ScholarPubMed
Anson, J, Cromwell, R M. Cervicocranial arterial dissection. Neurosurgery. 1991; 29:8996.CrossRefGoogle ScholarPubMed
Wahl, W L, Brandt, M M, Thompson, B G, Taheri, P A, Greefield, L J. Antiplatelet therapy: an alternative to heparin for blunt carotid injury. J Trauma. 2002; 52:896901.Google ScholarPubMed
Cothren, C C, Moore, E E, Biffl, W L, et al. Anticoagulation is the gold standard therapy for blunt carotid injuries to reduce stroke rate. Arch Surg. 2004; 139:545–6.CrossRefGoogle Scholar
DiCocco, J M, Fabian, T C, Emmett, K P, et al. Optimal outcomes for patients with blunt cerebrovascular injury (BCVI): tailoring treatment to the lesion. J Am Coll Surg. 2011; 212:547–9.CrossRefGoogle ScholarPubMed
Cothren, C C, Moore, E E, Ray, C E, et al. Carotid artery stents for blunt cerebrovascular injury: risks exceed benefits. Arch Surg. 2005; 140:480–5.CrossRefGoogle ScholarPubMed
International Stroke Trial Collaborative Group. The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both or neither among 19 435 patients with acute ischaemic stroke. Lancet. 1997; 349:1569–81.Google Scholar
Chen, Y H, Kang, J H, Lin, H C. Patients with traumatic brain injury. Population-based study suggests increased risk of stroke. Stroke. 2011; 42:2733–9.CrossRefGoogle ScholarPubMed
Glenn, M B. Sudden cardiac death and stroke with use of antipsychotic medications: Implications for clinicians treating individuals with traumatic brain injury. J Head Trauma Rehabil. 2010; 25:6870.Google ScholarPubMed
Blacker, D J. NSAIDS and stroke risk. Med J Aust. 2011; 41:488.CrossRefGoogle Scholar
Wu, J C, Chen, Y C, Liu, L, et al. Increased risk of stroke after spinal cord injury. Neurology. 2012; 78:1051–7.CrossRefGoogle ScholarPubMed
Rothwell, P M. Does blood pressure variability modulate cardiovascular risk? Curr Hypertens Rep. 2011; 13:177–86.CrossRefGoogle ScholarPubMed
Weinhardt, J, Jacobson, K. Stroke assessment in the perioperative patient. Orthop Nurs. 2012; 31:21–6.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×